forked from albanie/mcnFasterRCNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
faster_rcnn_evaluation.m
255 lines (225 loc) · 10 KB
/
faster_rcnn_evaluation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
function results = faster_rcnn_evaluation(expDir, net, opts)
%FASTER_RCNN_EVALUATION - run detector evaluation
% FASTER_RCNN_EVALUATION(EXPDIR, NET) - evaluates the network NET
% on the imdb specified (as a path option), and stores results in
% EXPDIR.
%
% Copyright (C) 2017 Samuel Albanie
% All rights reserved.
% load/create imdb and configure
if exist(opts.dataOpts.imdbPath, 'file')
imdb = load(opts.dataOpts.imdbPath) ;
else
imdb = opts.dataOpts.getImdb(opts) ;
imdbDir = fileparts(opts.dataOpts.imdbPath) ;
if ~exist(imdbDir, 'dir'), mkdir(imdbDir) ; end
save(opts.dataOpts.imdbPath, '-struct', 'imdb') ;
end
[opts, imdb] = opts.dataOpts.configureImdbOpts(expDir, opts, imdb) ;
switch opts.testset
case 'train', setLabel = 1 ;
case 'val', setLabel = 2 ;
case 'test', setLabel = 3 ;
case 'test-dev', setLabel = 4 ;
end
testIdx = find(imdb.images.set == setLabel) ;
% retrieve results from cache if possible
results = checkCache(opts, net, imdb, testIdx) ;
opts.dataOpts.displayResults(opts.modelName, results, opts) ;
% -------------------------------------------------
function res = checkCache(opts, net, imdb, testIdx)
% -------------------------------------------------
path = opts.cacheOpts.resultsCache ;
if exist(path, 'file') && ~opts.cacheOpts.refreshCache
fprintf('loading results from cache\n') ;
tmp = load(path) ; res = tmp.results ;
else
p = computePredictions(net, imdb, testIdx, opts) ;
decoded = decodePredictions(p, imdb, testIdx, opts) ;
s.results = opts.dataOpts.eval_func(opts.modelName, decoded, imdb, opts) ;
fprintf('saving to %s\n', path) ; save(path, '-struct', 's', '-v7.3') ;
res = s.results ;
end
% -------------------------------------------------------------------------
function decodedPreds = decodePredictions(p, imdb, testIdx, opts)
% -------------------------------------------------------------------------
numClasses = numel(imdb.meta.classes) ;
imageIds = cell(1, numClasses) ;
scores = cell(1, numClasses) ;
bboxes = cell(1, numClasses) ;
cPreds = p.cPreds ; bPreds = p.bPreds ;
for t = 1:numel(testIdx)
% find predictions for current image
cPreds_ = cPreds(:,:,t) ; boxes = bPreds(:,:,t)' ;
keep = find(boxes(:,4) ~= 0) ; % drop unused RoIs
boxes = boxes(keep,:) ; cPreds_ = cPreds_(:,keep) ; numKept = 0 ;
for c = 1:numClasses - 1 % don't store bg
target = c + 1 ; % add offset for bg class
% compute regressed proposals
if ~opts.modelOpts.classAgnosticReg
tBoxes = boxes(:,(target-1)*4+1:(target)*4) ;
else
tBoxes = boxes(:,5:8) ; % shared set of regressors
end
tScores = cPreds_(target,:)' ;
cls_dets = [tBoxes tScores] ;
% drop preds below threshold
keep = find(cls_dets(:,end) >= opts.modelOpts.confThresh) ;
cls_dets = cls_dets(keep,:) ;
if ~numel(keep), continue ; end
% TODO(samuel): Move last round of NMS into the computePredictions
% function for a fair timing benchmark (although this does match how
% Girshick does it currently)
% heuristic: keep a fixed number of dets per class per image before nms
[~,si] = sort(cls_dets(:,5),'descend') ; cls_dets = cls_dets(si,:) ;
numKeep = min(size(cls_dets,1),opts.modelOpts.maxPredsPerImage) ;
cls_dets = cls_dets(1:numKeep,:) ;
keep = vl_nnbboxnms(cls_dets', opts.modelOpts.nmsThresh) ;
cls_dets = cls_dets(keep, :) ;
if numel(keep)
numKept = numKept + numel(keep) ;
pBoxes = cls_dets(:,1:4) + 1 ; % Top left is (1,1) in VOC notation
pScores = cls_dets(:,5) ;
pBoxes = round(pBoxes, 2) ; % save storage space
pScores = round(pScores, 5) ;
switch opts.dataOpts.resultsFormat
case 'minMax', % do nothing
case 'minWH', pBoxes = [ pBoxes(:, 1:2) pBoxes(:,3:4) - pBoxes(:,1:2) ] ;
otherwise, error('%s not recognised', opts.dataOpts.resultsFormat) ;
end
scores{c} = vertcat(scores{c}, pScores) ;
bboxes{c} = vertcat(bboxes{c}, pBoxes) ;
switch opts.dataOpts.name % ids are used differently by the datasets
case 'pascal', pId = imdb.images.name{testIdx(t)} ;
case 'coco', pId = imdb.images.id(testIdx(t)) ;
end
imageIds{c} = vertcat(imageIds{c}, repmat({pId}, size(pScores))) ;
end
end
if mod(t,100) == 1, fprintf('extracting %d/%d\n', t, numel(testIdx)) ; end
end
decodedPreds.imageIds = imageIds ;
decodedPreds.scores = scores ;
decodedPreds.bboxes = bboxes ;
% -------------------------------------------------------
function p = computePredictions(net, imdb, testIdx, opts)
% -------------------------------------------------------
prepareGPUs(opts, true) ;
p = struct() ; params.testIdx = testIdx ;
if numel(opts.gpus) <= 1
state = processDetections(net, imdb, params, opts) ;
p.cPreds = state.clsPreds ; p.bPreds = state.bboxPreds ;
else
topK = opts.modelOpts.maxPreds ; numClasses = opts.modelOpts.numClasses ;
p.clsPreds = zeros(numClasses, topK, numel(testIdx), 'single') ;
if opts.modelOpts.classAgnosticReg, b = 8 ; else, b = 4*numClasses ; end
p.bboxPreds = zeros(b, topK, numel(testIdx), 'single') ;
startup ; % fix for parallel oddities
spmd
state = processDetections(net, imdb, params, opts) ;
end
for i = 1:numel(opts.gpus)
state_ = state{i} ;
p.cPreds(:,:,state_.computedIdx) = state_.clsPreds ;
p.bPreds(:,:,state_.computedIdx) = state_.bboxPreds ;
end
p = rmfield(p, 'bboxPreds') ; p = rmfield(p, 'clsPreds') ; % clean up
end
% -------------------------------------------------------------------
function state = processDetections(net, imdb, params, opts, varargin)
% -------------------------------------------------------------------
sopts.scale = [] ;
sopts = vl_argparse(sopts, varargin) ;
% benchmark speed
num = 0 ; adjustTime = 0 ; stats.time = 0 ;
stats.num = num ; start = tic ; testIdx = params.testIdx ;
if ~isempty(opts.gpus), net.move('gpu') ; end
% pre-compute the indices of the predictions made by each worker
startIdx = labindex:numlabs:opts.batchOpts.batchSize ;
idx = arrayfun(@(x) {x:opts.batchOpts.batchSize:numel(testIdx)}, startIdx) ;
computedIdx = sort(horzcat(idx{:})) ;
% only the top K preds kept
topK = opts.modelOpts.maxPreds ;
numClasses = opts.modelOpts.numClasses ;
% The number of bbox predictions stored depends on whether the model makes
% "per-class" predictions, or is agnostic to category for regression
if opts.modelOpts.classAgnosticReg, b = 8 ; else, b = 4*numClasses ; end
state.bboxPreds = zeros(b, topK, numel(computedIdx), 'single') ;
state.clsPreds = zeros(numClasses, topK, numel(computedIdx), 'single') ;
state.computedIdx = computedIdx ;
offset = 1 ; sc = sopts.scale ;
for t = 1:opts.batchOpts.batchSize:numel(testIdx)
progress = fix((t-1) / opts.batchOpts.batchSize) + 1 ; % display progress
totalBatches = ceil(numel(testIdx) / opts.batchOpts.batchSize) ;
fprintf('evaluating batch %d / %d: ', progress, totalBatches) ;
batchSize = min(opts.batchOpts.batchSize, numel(testIdx) - t + 1) ;
batchStart = t + (labindex - 1) ;
batchEnd = min(t + opts.batchOpts.batchSize - 1, numel(testIdx)) ;
batch = testIdx(batchStart : numlabs : batchEnd) ;
num = num + numel(batch) ;
if numel(batch) == 0, continue ; end
if ~isempty(sc), args = {batch, opts, sc} ; else, args = {batch, opts} ; end
inputs = opts.modelOpts.get_eval_batch(imdb, args{:}) ;
if opts.prefetch
batchStart_ = t + (labindex - 1) + opts.batchOpts.batchSize ;
batchEnd_ = min(t + 2*opts.batchOpts.batchSize - 1, numel(testIdx)) ;
next = testIdx(batchStart_: numlabs : batchEnd_) ;
if ~isempty(sc), args = {next, opts, sc} ; else, args = {next, opts} ; end
opts.modelOpts.get_eval_batch(imdb, args{:}, 'prefetch', true) ;
end
net.eval(inputs, 'test') ;
storeIdx = offset:offset + numel(batch) - 1 ;
offset = offset + numel(batch) ;
% THe final rounds of NMS will be done on the CPU during decoding
cPreds = gather(net.getValue('cls_prob')) ;
bPreds = gather(net.getValue('bbox_pred')) ;
rois = gather(net.getValue('proposal')) ;
im_info = inputs{4} ; factor = im_info(3) ;
imsz = round(im_info(1:2) / factor) ;
boxes = (rois(2:end,:) - 1) / factor ; % undo offset required by roipool
cBoxes = bboxTransformInv(boxes, squeeze(bPreds)) ;
cBoxes = clipBoxes(cBoxes, imsz) ;
state.clsPreds(:,1:size(cPreds,4),storeIdx) = cPreds ;
state.bboxPreds(:,1:size(bPreds,4),storeIdx) = cBoxes ;
time = toc(start) + adjustTime ; batchTime = time - stats.time ;
stats.num = num ; stats.time = time ; currentSpeed = batchSize / batchTime ;
averageSpeed = (t + batchSize - 1) / time ;
if t == 3*opts.batchOpts.batchSize + 1
% compensate for the first three iterations, which are outliers
adjustTime = 4*batchTime - time ; stats.time = time + adjustTime ;
end
fprintf('speed %.1f (%.1f) Hz', averageSpeed, currentSpeed) ; fprintf('\n') ;
end
net.move('cpu') ;
% -------------------------------------------------------------------------
function clearMex()
% -------------------------------------------------------------------------
clear vl_tmove vl_imreadjpeg ;
% -------------------------------------------------------------------------
function prepareGPUs(opts, cold)
% -------------------------------------------------------------------------
numGpus = numel(opts.gpus) ;
if numGpus > 1
% check parallel pool integrity as it could have timed out
pool = gcp('nocreate') ;
if ~isempty(pool) && pool.NumWorkers ~= numGpus
delete(pool) ;
end
pool = gcp('nocreate') ;
if isempty(pool)
parpool('local', numGpus) ;
cold = true ;
end
end
if numGpus >= 1 && cold
fprintf('%s: resetting GPU\n', mfilename)
clearMex() ;
if numGpus == 1
gpuDevice(opts.gpus)
else
spmd
clearMex() ;
gpuDevice(opts.gpus(labindex))
end
end
end