forked from nlintz/TensorFlow-Tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path04_modern_net.py
executable file
·54 lines (38 loc) · 1.85 KB
/
04_modern_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#!/usr/bin/env python
import tensorflow as tf
import numpy as np
import input_data
def init_weights(shape):
return tf.Variable(tf.random_normal(shape, stddev=0.01))
def model(X, w_h, w_h2, w_o, p_keep_input, p_keep_hidden): # this network is the same as the previous one except with an extra hidden layer + dropout
X = tf.nn.dropout(X, p_keep_input)
h = tf.nn.relu(tf.matmul(X, w_h))
h = tf.nn.dropout(h, p_keep_hidden)
h2 = tf.nn.relu(tf.matmul(h, w_h2))
h2 = tf.nn.dropout(h2, p_keep_hidden)
return tf.matmul(h2, w_o)
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels
X = tf.placeholder("float", [None, 784])
Y = tf.placeholder("float", [None, 10])
w_h = init_weights([784, 625])
w_h2 = init_weights([625, 625])
w_o = init_weights([625, 10])
p_keep_input = tf.placeholder("float")
p_keep_hidden = tf.placeholder("float")
py_x = model(X, w_h, w_h2, w_o, p_keep_input, p_keep_hidden)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(py_x, Y))
train_op = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost)
predict_op = tf.argmax(py_x, 1)
# Launch the graph in a session
with tf.Session() as sess:
# you need to initialize all variables
tf.initialize_all_variables().run()
for i in range(100):
for start, end in zip(range(0, len(trX), 128), range(128, len(trX)+1, 128)):
sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end],
p_keep_input: 0.8, p_keep_hidden: 0.5})
print(i, np.mean(np.argmax(teY, axis=1) ==
sess.run(predict_op, feed_dict={X: teX,
p_keep_input: 1.0,
p_keep_hidden: 1.0})))