⚡️FastDeploy是一款简单易用的推理部署工具箱。覆盖业界主流优质预训练模型并提供开箱即用的开发体验,包括图像分类、目标检测、图像分割、人脸检测、人体关键点识别、文字识别等多任务,满足开发者多场景,多硬件、多平台的快速部署需求。
- [v0.2.0] 2022.08.18 全面开源服务端部署代码,支持40+视觉模型在CPU/GPU,以及通过TensorRT加速部署
符号说明: (1) ✅: 已经支持; (2) ❔: 计划未来支持; (3) ❌: 暂不支持; (4) contrib: 外部模型
任务场景 | 模型 | API | Linux | Linux | Win | Win | Mac | Mac | Linux |
---|---|---|---|---|---|---|---|---|---|
--- | --- | --- | X86 CPU | NVIDIA GPU | Intel CPU | NVIDIA GPU | Intel CPU | Arm CPU | NVIDIA Jetson |
Classification | PaddleClas/ResNet50 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/PPLCNet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/PPLCNetv2 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/EfficientNet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/GhostNet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/MobileNetV1 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/MobileNetV2 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/MobileNetV3 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/ShuffleNetV2 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/SqueeezeNetV1.1 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/Inceptionv3 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/PPHGNet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/SwinTransformer | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Detection | PaddleDetection/PPYOLOE | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Detection | PaddleDetection/PicoDet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Detection | PaddleDetection/YOLOX | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Detection | PaddleDetection/YOLOv3 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Detection | PaddleDetection/PPYOLO | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❔ |
Detection | PaddleDetection/PPYOLOv2 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❔ |
Detection | PaddleDetection/FasterRCNN | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❔ |
Detection | Contrib/YOLOX | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Detection | Contrib/YOLOv7 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Detection | Contrib/YOLOv6 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Detection | Contrib/YOLOv5 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Detection | Contrib/YOLOR | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Detection | Contrib/ScaledYOLOv4 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Detection | Contrib/YOLOv5Lite | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Detection | Contrib/NanoDetPlus | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Segmentation | PaddleSeg/PPLiteSeg | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Segmentation | PaddleSeg/PPHumanSegLite | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Segmentation | PaddleSeg/HRNet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Segmentation | PaddleSeg/PPHumanSegServer | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Segmentation | PaddleSeg/Unet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Segmentation | PaddleSeg/Deeplabv3 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
FaceDetection | Contrib/RetinaFace | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
FaceDetection | Contrib/UltraFace | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
FaceDetection | Contrib/YOLOv5Face | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
FaceDetection | Contrib/SCRFD | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
FaceRecognition | Contrib/ArcFace | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
FaceRecognition | Contrib/CosFace | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
FaceRecognition | Contrib/PartialFC | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
FaceRecognition | Contrib/VPL | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Matting | Contrib/MODNet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
💡 快速安装 FastDeploy Python/C++ 库
用户根据自己的python版本选择安装对应的wheel包,详细的wheel目录请参考 python安装文档 .
pip install https://bj.bcebos.com/paddlehub/fastdeploy/wheels/fastdeploy_python-0.2.0-cp38-cp38-manylinux1_x86_64.whl
或获取C++预编译库,更多可用的预编译库请参考 C++预编译库下载
wget https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-0.2.0.tgz
准备目标检测模型和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
tar xvf ppyoloe_crn_l_300e_coco.tgz
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
import cv2
import fastdeploy.vision as vision
model = vision.detection.PPYOLOE("model.pdmodel", "model.pdiparams", "infer_cfg.yml")
im = cv2.imread("000000014439.jpg")
result = model.predict(im.copy())
print(result)
vis_im = vision.vis_detection(im, result, score_threshold=0.5)
cv2.imwrite("vis_image.jpg", vis_im)
#include "fastdeploy/vision.h"
int main(int argc, char* argv[]) {
namespace vision = fastdeploy::vision;
auto model = vision::detection::PPYOLOE("model.pdmodel", "model.pdiparams", "infer_cfg.yml");
auto im = cv::imread("000000014439.jpg");
vision::DetectionResult res;
model.Predict(&im, &res)
auto vis_im = vision::Visualize::VisDetection(im, res, 0.5);
cv::imwrite("vis_image.jpg", vis_im);
}
更多部署案例请参考视觉模型部署示例 .
任务场景 | 模型 | 大小(MB) | 边缘端 | 移动端 | 移动端 |
---|---|---|---|---|---|
--- | --- | --- | Linux | Android | iOS |
--- | --- | --- | ARM CPU | ARM CPU | ARM CPU |
Classification | PP-LCNet | 11.9 | ✅ | ✅ | ✅ |
Classification | PP-LCNetv2 | 26.6 | ✅ | ✅ | ✅ |
Classification | EfficientNet | 31.4 | ✅ | ✅ | ✅ |
Classification | GhostNet | 20.8 | ✅ | ✅ | ✅ |
Classification | MobileNetV1 | 17 | ✅ | ✅ | ✅ |
Classification | MobileNetV2 | 14.2 | ✅ | ✅ | ✅ |
Classification | MobileNetV3 | 22 | ✅ | ✅ | ✅ |
Classification | ShuffleNetV2 | 9.2 | ✅ | ✅ | ✅ |
Classification | SqueezeNetV1.1 | 5 | ✅ | ✅ | ✅ |
Classification | Inceptionv3 | 95.5 | ✅ | ✅ | ✅ |
Classification | PP-HGNet | 59 | ✅ | ✅ | ✅ |
Classification | SwinTransformer_224_win7 | 352.7 | ✅ | ✅ | ✅ |
Detection | PP-PicoDet_s_320_coco | 4.1 | ✅ | ✅ | ✅ |
Detection | PP-PicoDet_s_320_lcnet | 4.9 | ✅ | ✅ | ✅ |
Detection | CenterNet | 4.8 | ✅ | ✅ | ✅ |
Detection | YOLOv3_MobileNetV3 | 94.6 | ✅ | ✅ | ✅ |
Detection | PP-YOLO_tiny_650e_coco | 4.4 | ✅ | ✅ | ✅ |
Detection | SSD_MobileNetV1_300_120e_voc | 23.3 | ✅ | ✅ | ✅ |
Detection | PP-YOLO_ResNet50vd | 188.5 | ✅ | ✅ | ✅ |
Detection | PP-YOLOv2_ResNet50vd | 218.7 | ✅ | ✅ | ✅ |
Detection | PP-YOLO_crn_l_300e_coco | 209.1 | ✅ | ✅ | ✅ |
Detection | YOLOv5s | 29.3 | ✅ | ✅ | ✅ |
FaceDetection | BlazeFace | 1.5 | ✅ | ✅ | ✅ |
FaceDetection | RetinaFace | 1.7 | ✅ | ❌ | ❌ |
KeypointsDetection | PP-TinyPose | 5.5 | ✅ | ✅ | ✅ |
Segmentation | PP-LiteSeg(STDC1) | 32.2 | ✅ | ✅ | ✅ |
Segmentation | PP-HumanSeg-Lite | 0.556 | ✅ | ✅ | ✅ |
Segmentation | HRNet-w18 | 38.7 | ✅ | ✅ | ✅ |
Segmentation | PP-HumanSeg-Server | 107.2 | ✅ | ✅ | ✅ |
Segmentation | Unet | 53.7 | ❌ | ✅ | ❌ |
OCR | PP-OCRv1 | 2.3+4.4 | ✅ | ✅ | ✅ |
OCR | PP-OCRv2 | 2.3+4.4 | ✅ | ✅ | ✅ |
OCR | PP-OCRv3 | 2.4+10.6 | ✅ | ✅ | ✅ |
OCR | PP-OCRv3-tiny | 2.4+10.7 | ✅ | ✅ | ✅ |
- ARM Linux 系统
- 加入社区👬: 微信扫描二维码后,填写问卷加入交流群,与开发者共同讨论推理部署痛点问题
本项目中SDK生成和下载使用了EasyEdge中的免费开放能力,再次表示感谢。
FastDeploy遵循Apache-2.0开源协议。