Skip to content

⚡️An Easy-to-use and Fast Deep Learning Model Deployment Toolkit

License

Notifications You must be signed in to change notification settings

mj163163/FastDeploy

Repository files navigation

⚡️FastDeploy

⚡️FastDeploy是一款简单易用的推理部署工具箱。覆盖业界主流优质预训练模型并提供开箱即用的开发体验,包括图像分类、目标检测、图像分割、人脸检测、人体关键点识别、文字识别等多任务,满足开发者多场景多硬件多平台的快速部署需求。

发版历史

  • [v0.2.0] 2022.08.18 全面开源服务端部署代码,支持40+视觉模型在CPU/GPU,以及通过TensorRT加速部署

内容目录

1. 服务端模型列表 🔥🔥🔥

符号说明: (1) ✅: 已经支持; (2) ❔: 计划未来支持; (3) ❌: 暂不支持; (4) contrib: 外部模型

任务场景 模型 API Linux Linux Win Win Mac Mac Linux
--- --- --- X86 CPU NVIDIA GPU Intel CPU NVIDIA GPU Intel CPU Arm CPU NVIDIA Jetson
Classification PaddleClas/ResNet50 Python/C++
Classification PaddleClas/PPLCNet Python/C++
Classification PaddleClas/PPLCNetv2 Python/C++
Classification PaddleClas/EfficientNet Python/C++
Classification PaddleClas/GhostNet Python/C++
Classification PaddleClas/MobileNetV1 Python/C++
Classification PaddleClas/MobileNetV2 Python/C++
Classification PaddleClas/MobileNetV3 Python/C++
Classification PaddleClas/ShuffleNetV2 Python/C++
Classification PaddleClas/SqueeezeNetV1.1 Python/C++
Classification PaddleClas/Inceptionv3 Python/C++
Classification PaddleClas/PPHGNet Python/C++
Classification PaddleClas/SwinTransformer Python/C++
Detection PaddleDetection/PPYOLOE Python/C++
Detection PaddleDetection/PicoDet Python/C++
Detection PaddleDetection/YOLOX Python/C++
Detection PaddleDetection/YOLOv3 Python/C++
Detection PaddleDetection/PPYOLO Python/C++
Detection PaddleDetection/PPYOLOv2 Python/C++
Detection PaddleDetection/FasterRCNN Python/C++
Detection Contrib/YOLOX Python/C++
Detection Contrib/YOLOv7 Python/C++
Detection Contrib/YOLOv6 Python/C++
Detection Contrib/YOLOv5 Python/C++
Detection Contrib/YOLOR Python/C++
Detection Contrib/ScaledYOLOv4 Python/C++
Detection Contrib/YOLOv5Lite Python/C++
Detection Contrib/NanoDetPlus Python/C++
Segmentation PaddleSeg/PPLiteSeg Python/C++
Segmentation PaddleSeg/PPHumanSegLite Python/C++
Segmentation PaddleSeg/HRNet Python/C++
Segmentation PaddleSeg/PPHumanSegServer Python/C++
Segmentation PaddleSeg/Unet Python/C++
Segmentation PaddleSeg/Deeplabv3 Python/C++
FaceDetection Contrib/RetinaFace Python/C++
FaceDetection Contrib/UltraFace Python/C++
FaceDetection Contrib/YOLOv5Face Python/C++
FaceDetection Contrib/SCRFD Python/C++
FaceRecognition Contrib/ArcFace Python/C++
FaceRecognition Contrib/CosFace Python/C++
FaceRecognition Contrib/PartialFC Python/C++
FaceRecognition Contrib/VPL Python/C++
Matting Contrib/MODNet Python/C++

2. 服务端快速开始

💡 快速安装 FastDeploy Python/C++ 库

用户根据自己的python版本选择安装对应的wheel包,详细的wheel目录请参考 python安装文档 .

pip install https://bj.bcebos.com/paddlehub/fastdeploy/wheels/fastdeploy_python-0.2.0-cp38-cp38-manylinux1_x86_64.whl

或获取C++预编译库,更多可用的预编译库请参考 C++预编译库下载

wget https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-0.2.0.tgz

准备目标检测模型和测试图片

wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
tar xvf ppyoloe_crn_l_300e_coco.tgz
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg

2.1 Python预测示例

import cv2
import fastdeploy.vision as vision

model = vision.detection.PPYOLOE("model.pdmodel", "model.pdiparams", "infer_cfg.yml")
im = cv2.imread("000000014439.jpg")
result = model.predict(im.copy())
print(result)

vis_im = vision.vis_detection(im, result, score_threshold=0.5)
cv2.imwrite("vis_image.jpg", vis_im)

2.2 C++预测示例

#include "fastdeploy/vision.h"

int main(int argc, char* argv[]) {
  namespace vision = fastdeploy::vision;
  auto model = vision::detection::PPYOLOE("model.pdmodel", "model.pdiparams", "infer_cfg.yml");
  auto im = cv::imread("000000014439.jpg");

  vision::DetectionResult res;
  model.Predict(&im, &res)

  auto vis_im = vision::Visualize::VisDetection(im, res, 0.5);
  cv::imwrite("vis_image.jpg", vis_im);
}

更多部署案例请参考视觉模型部署示例 .

3. 轻量化SDK快速实现端侧AI推理部署 📱

任务场景 模型 大小(MB) 边缘端 移动端 移动端
--- --- --- Linux Android iOS
--- --- --- ARM CPU ARM CPU ARM CPU
Classification PP-LCNet 11.9
Classification PP-LCNetv2 26.6
Classification EfficientNet 31.4
Classification GhostNet 20.8
Classification MobileNetV1 17
Classification MobileNetV2 14.2
Classification MobileNetV3 22
Classification ShuffleNetV2 9.2
Classification SqueezeNetV1.1 5
Classification Inceptionv3 95.5
Classification PP-HGNet 59
Classification SwinTransformer_224_win7 352.7
Detection PP-PicoDet_s_320_coco 4.1
Detection PP-PicoDet_s_320_lcnet 4.9
Detection CenterNet 4.8
Detection YOLOv3_MobileNetV3 94.6
Detection PP-YOLO_tiny_650e_coco 4.4
Detection SSD_MobileNetV1_300_120e_voc 23.3
Detection PP-YOLO_ResNet50vd 188.5
Detection PP-YOLOv2_ResNet50vd 218.7
Detection PP-YOLO_crn_l_300e_coco 209.1
Detection YOLOv5s 29.3
FaceDetection BlazeFace 1.5
FaceDetection RetinaFace 1.7
KeypointsDetection PP-TinyPose 5.5
Segmentation PP-LiteSeg(STDC1) 32.2
Segmentation PP-HumanSeg-Lite 0.556
Segmentation HRNet-w18 38.7
Segmentation PP-HumanSeg-Server 107.2
Segmentation Unet 53.7
OCR PP-OCRv1 2.3+4.4
OCR PP-OCRv2 2.3+4.4
OCR PP-OCRv3 2.4+10.6
OCR PP-OCRv3-tiny 2.4+10.7

3.1 边缘侧部署

3.2 移动端部署

3.3 自定义模型部署

4. 社区交流

  • 加入社区👬: 微信扫描二维码后,填写问卷加入交流群,与开发者共同讨论推理部署痛点问题

5. Acknowledge

本项目中SDK生成和下载使用了EasyEdge中的免费开放能力,再次表示感谢。

6. License

FastDeploy遵循Apache-2.0开源协议

About

⚡️An Easy-to-use and Fast Deep Learning Model Deployment Toolkit

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 74.9%
  • Python 16.1%
  • CMake 6.8%
  • Shell 1.3%
  • Batchfile 0.5%
  • C 0.4%