-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathodeint.py
96 lines (77 loc) · 3.52 KB
/
odeint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
""" Neural ordinary differential equations module. """
from types import FunctionType
import tensorflow as tf
tf.register_tensor_conversion_function(
FunctionType, lambda value, *args, **kwargs: tf.zeros(0))
tf.register_tensor_conversion_function(
tf.keras.Model, lambda value, *args, **kwargs: tf.zeros(0))
def _flatten(tensors):
""" Flattens given tensor or a collection of tensors. """
if not isinstance(tensors, (list, tuple)): # given single tensor
return tf.reshape(tensors, (-1,))
return (tf.concat([tf.reshape(t, (-1,)) for t in tensors], 0)
if tensors else tf.convert_to_tensor([]))
def _unflatten(tensor, shapes):
""" Splits given tensor and reshapes results using given shapes. """
split = tf.split(tensor, [tf.reduce_prod(s) for s in shapes])
return [tf.reshape(t, s) for t, s in zip(split, shapes)]
def odeint_grad(grad_output, func, yt, t, variables=None,
rtol=1e-6, atol=1e-12):
""" Adjoint method for computing gradients through odeint solvers. """
# pylint: disable=too-many-arguments, invalid-name, too-many-locals
yshape = yt.shape[1:]
ysize = tf.reduce_prod(yshape)
def backward_dynamics(state, t):
state = tf.convert_to_tensor(state, dtype=tf.float32)
t = tf.convert_to_tensor(t, dtype=tf.float32)
y = tf.reshape(state[:ysize], yshape)
adjoint_grad_y = tf.reshape(state[ysize:2 * ysize], yshape)
with tf.GradientTape() as tape:
tape.watch([t, y])
fval = func(y, t)
vjp_t, vjp_y, vjp_variables = tape.gradient(
fval, [t, y, variables],
output_gradients=-adjoint_grad_y)
vjp_t = tf.zeros_like(t)
vjp_y = _flatten(vjp_y)
vjp_variables = _flatten(vjp_variables)
# use negative values to integrate from t[i] to t[i - 1] using
# tf.contrib.integrate.odeint.
# pylint: disable=invalid-unary-operand-type
return -tf.concat([_flatten(fval), vjp_y, vjp_t[None], vjp_variables], 0)
y_grad = grad_output[-1]
t_grad = 0
time_grads = []
flat_variables = _flatten(variables)
variables_grad = tf.zeros_like(flat_variables)
for i in range(yt.shape[0].value - 1, 0, -1):
new_t_grad = tf.tensordot(_flatten(func(yt[i], t[i])),
_flatten(grad_output[i]), 1)
time_grads.append(float(new_t_grad))
t_grad = float(t_grad - new_t_grad)
backward_state = tf.concat([_flatten(yt[i]), _flatten(y_grad),
[t_grad], variables_grad], 0)
backward_t = tf.convert_to_tensor([-t[i], -t[i - 1]])
backward_answer = tf.contrib.integrate.odeint(
backward_dynamics,
y0=backward_state, t=backward_t,
rtol=rtol, atol=atol)[-1]
_, y_grad, t_grad, variables_grad = tf.split(backward_answer,
[ysize, ysize, 1, -1])
y_grad = y_grad + _flatten(grad_output[i - 1, :])
time_grads.append(float(t_grad))
time_grads.reverse()
time_grads = tf.convert_to_tensor(time_grads)
if variables:
variables_grad = _unflatten(variables_grad, [v.shape for v in variables])
y_grad = tf.reshape(y_grad, yshape)
return (tf.zeros(0), y_grad, time_grads), variables_grad
@tf.custom_gradient
def odeint(func, y0, t, rtol=1e-6, atol=1e-12):
""" Wrapper for tf.contrib.integrate.odeint that implements backprop. """
# pylint: disable=invalid-name
yt = tf.contrib.integrate.odeint(func, y0, t, rtol=rtol, atol=atol)
def grad_fn(grad_output, variables=None):
return odeint_grad(grad_output, func, yt, t, variables=variables,
rtol=rtol, atol=atol)
return yt, grad_fn