-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathaggregate_purepy.py
191 lines (147 loc) · 4.6 KB
/
aggregate_purepy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import itertools
import math
import operator
from .utils import aggregate_common_doc
from .utils import aliasing_py as aliasing
from .utils import funcs_no_separate_nan, get_func
# min, max, sum, all, any - builtin
def _last(x):
return x[-1]
def _first(x):
return x[0]
def _array(x):
return x
def _mean(x):
return sum(x) / len(x)
def _var(x, ddof=0):
mean = _mean(x)
return sum((xx - mean) ** 2 for xx in x) / (len(x) - ddof)
def _std(x, ddof=0):
return math.sqrt(_var(x, ddof=ddof))
def _prod(x):
r = x[0]
for xx in x[1:]:
r *= xx
return r
def _anynan(x):
return any(math.isnan(xx) for xx in x)
def _allnan(x):
return all(math.isnan(xx) for xx in x)
def _argmax(x_and_idx):
return max(x_and_idx, key=operator.itemgetter(1))[0]
_argmax.x_and_idx = True # tell aggregate what to use as first arg
def _argmin(x_and_idx):
return min(x_and_idx, key=operator.itemgetter(1))[0]
_argmin.x_and_idx = True # tell aggregate what to use as first arg
def _sort(group_idx, a, reverse=False):
def _argsort(unordered):
return sorted(range(len(unordered)), key=lambda k: unordered[k])
sortidx = _argsort(
list((gi, aj) for gi, aj in zip(group_idx, -a if reverse else a))
)
revidx = _argsort(_argsort(group_idx))
a_srt = [a[si] for si in sortidx]
return [a_srt[ri] for ri in revidx]
_impl_dict = dict(
min=min,
max=max,
sum=sum,
prod=_prod,
last=_last,
first=_first,
all=all,
any=any,
mean=_mean,
std=_std,
var=_var,
anynan=_anynan,
allnan=_allnan,
sort=_sort,
array=_array,
argmax=_argmax,
argmin=_argmin,
len=len,
)
_impl_dict.update(
("nan" + k, v)
for k, v in list(_impl_dict.items())
if k not in funcs_no_separate_nan
)
def aggregate(
group_idx,
a,
func="sum",
size=None,
fill_value=0,
order=None,
dtype=None,
axis=None,
**kwargs,
):
if axis is not None:
raise NotImplementedError("axis arg not supported in purepy implementation.")
# Check for 2d group_idx
if size is None:
try:
size = 1 + int(max(group_idx))
except (TypeError, ValueError):
raise NotImplementedError(
"pure python implementation doesn't accept ndim idx input."
)
for i in group_idx:
try:
i = int(i)
except (TypeError, ValueError):
if isinstance(i, (list, tuple)):
raise NotImplementedError(
"pure python implementation doesn't accept ndim idx input."
)
else:
try:
len(i)
except TypeError:
raise ValueError(f"invalid value found in group_idx: {i}")
else:
raise NotImplementedError(
"pure python implementation doesn't accept ndim indexed input."
)
else:
if i < 0:
raise ValueError("group_idx contains negative value")
func = get_func(func, aliasing, _impl_dict)
if isinstance(a, (int, float)):
if func not in ("sum", "prod", "len"):
raise ValueError(
"scalar inputs are supported only for 'sum', 'prod' and 'len'"
)
a = [a] * len(group_idx)
elif len(group_idx) != len(a):
raise ValueError("group_idx and a must be of the same length")
if isinstance(func, str):
if func.startswith("nan"):
func = func[3:]
# remove nans
group_idx, a = zip(
*((ix, val) for ix, val in zip(group_idx, a) if not math.isnan(val))
)
func = _impl_dict[func]
if func is _sort:
return _sort(group_idx, a, reverse=kwargs.get("reverse", False))
# sort data and evaluate function on groups
ret = [fill_value] * size
if not getattr(func, "x_and_idx", False):
data = sorted(zip(group_idx, a), key=operator.itemgetter(0))
for ix, group in itertools.groupby(data, key=operator.itemgetter(0)):
ret[ix] = func(list(val for _, val in group), **kwargs)
else:
data = sorted(zip(range(len(a)), group_idx, a), key=operator.itemgetter(1))
for ix, group in itertools.groupby(data, key=operator.itemgetter(1)):
ret[ix] = func(list((val_idx, val) for val_idx, _, val in group), **kwargs)
return ret
aggregate.__doc__ = (
"""
This is the pure python implementation of aggregate. It is terribly slow.
Using the numpy version is highly recommended.
"""
+ aggregate_common_doc
)