forked from zephyrproject-rtos/zephyr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sched.c
1161 lines (976 loc) · 26.6 KB
/
sched.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <kernel.h>
#include <ksched.h>
#include <spinlock.h>
#include <sched_priq.h>
#include <wait_q.h>
#include <kswap.h>
#include <kernel_arch_func.h>
#include <syscall_handler.h>
#include <drivers/timer/system_timer.h>
#include <stdbool.h>
#include <kernel_internal.h>
#if defined(CONFIG_SCHED_DUMB)
#define _priq_run_add z_priq_dumb_add
#define _priq_run_remove z_priq_dumb_remove
# if defined(CONFIG_SCHED_CPU_MASK)
# define _priq_run_best _priq_dumb_mask_best
# else
# define _priq_run_best z_priq_dumb_best
# endif
#elif defined(CONFIG_SCHED_SCALABLE)
#define _priq_run_add z_priq_rb_add
#define _priq_run_remove z_priq_rb_remove
#define _priq_run_best z_priq_rb_best
#elif defined(CONFIG_SCHED_MULTIQ)
#define _priq_run_add z_priq_mq_add
#define _priq_run_remove z_priq_mq_remove
#define _priq_run_best z_priq_mq_best
#endif
#if defined(CONFIG_WAITQ_SCALABLE)
#define z_priq_wait_add z_priq_rb_add
#define _priq_wait_remove z_priq_rb_remove
#define _priq_wait_best z_priq_rb_best
#elif defined(CONFIG_WAITQ_DUMB)
#define z_priq_wait_add z_priq_dumb_add
#define _priq_wait_remove z_priq_dumb_remove
#define _priq_wait_best z_priq_dumb_best
#endif
/* the only struct z_kernel instance */
struct z_kernel _kernel;
static struct k_spinlock sched_spinlock;
#define LOCKED(lck) for (k_spinlock_key_t __i = {}, \
__key = k_spin_lock(lck); \
!__i.key; \
k_spin_unlock(lck, __key), __i.key = 1)
static inline int is_preempt(struct k_thread *thread)
{
#ifdef CONFIG_PREEMPT_ENABLED
/* explanation in kernel_struct.h */
return thread->base.preempt <= _PREEMPT_THRESHOLD;
#else
return 0;
#endif
}
static inline int is_metairq(struct k_thread *thread)
{
#if CONFIG_NUM_METAIRQ_PRIORITIES > 0
return (thread->base.prio - K_HIGHEST_THREAD_PRIO)
< CONFIG_NUM_METAIRQ_PRIORITIES;
#else
return 0;
#endif
}
#if CONFIG_ASSERT
static inline bool is_thread_dummy(struct k_thread *thread)
{
return (thread->base.thread_state & _THREAD_DUMMY) != 0U;
}
#endif
bool z_is_t1_higher_prio_than_t2(struct k_thread *t1, struct k_thread *t2)
{
if (t1->base.prio < t2->base.prio) {
return true;
}
#ifdef CONFIG_SCHED_DEADLINE
/* Note that we don't care about wraparound conditions. The
* expectation is that the application will have arranged to
* block the threads, change their priorities or reset their
* deadlines when the job is complete. Letting the deadlines
* go negative is fine and in fact prevents aliasing bugs.
*/
if (t1->base.prio == t2->base.prio) {
int now = (int) k_cycle_get_32();
int dt1 = t1->base.prio_deadline - now;
int dt2 = t2->base.prio_deadline - now;
return dt1 < dt2;
}
#endif
return false;
}
static ALWAYS_INLINE bool should_preempt(struct k_thread *th, int preempt_ok)
{
/* Preemption is OK if it's being explicitly allowed by
* software state (e.g. the thread called k_yield())
*/
if (preempt_ok != 0) {
return true;
}
__ASSERT(_current != NULL, "");
/* Or if we're pended/suspended/dummy (duh) */
if (z_is_thread_prevented_from_running(_current)) {
return true;
}
/* Edge case on ARM where a thread can be pended out of an
* interrupt handler before the "synchronous" swap starts
* context switching. Platforms with atomic swap can never
* hit this.
*/
if (IS_ENABLED(CONFIG_SWAP_NONATOMIC)
&& z_is_thread_timeout_active(th)) {
return true;
}
/* Otherwise we have to be running a preemptible thread or
* switching to a metairq
*/
if (is_preempt(_current) || is_metairq(th)) {
return true;
}
/* The idle threads can look "cooperative" if there are no
* preemptible priorities (this is sort of an API glitch).
* They must always be preemptible.
*/
if (!IS_ENABLED(CONFIG_PREEMPT_ENABLED) &&
z_is_idle_thread_object(_current)) {
return true;
}
return false;
}
#ifdef CONFIG_SCHED_CPU_MASK
static ALWAYS_INLINE struct k_thread *_priq_dumb_mask_best(sys_dlist_t *pq)
{
/* With masks enabled we need to be prepared to walk the list
* looking for one we can run
*/
struct k_thread *t;
SYS_DLIST_FOR_EACH_CONTAINER(pq, t, base.qnode_dlist) {
if ((t->base.cpu_mask & BIT(_current_cpu->id)) != 0) {
return t;
}
}
return NULL;
}
#endif
static ALWAYS_INLINE struct k_thread *next_up(void)
{
#ifndef CONFIG_SMP
/* In uniprocessor mode, we can leave the current thread in
* the queue (actually we have to, otherwise the assembly
* context switch code for all architectures would be
* responsible for putting it back in z_swap and ISR return!),
* which makes this choice simple.
*/
struct k_thread *th = _priq_run_best(&_kernel.ready_q.runq);
return th ? th : _current_cpu->idle_thread;
#else
/* Under SMP, the "cache" mechanism for selecting the next
* thread doesn't work, so we have more work to do to test
* _current against the best choice from the queue.
*
* Subtle note on "queued": in SMP mode, _current does not
* live in the queue, so this isn't exactly the same thing as
* "ready", it means "is _current already added back to the
* queue such that we don't want to re-add it".
*/
int queued = z_is_thread_queued(_current);
int active = !z_is_thread_prevented_from_running(_current);
/* Choose the best thread that is not current */
struct k_thread *th = _priq_run_best(&_kernel.ready_q.runq);
if (th == NULL) {
th = _current_cpu->idle_thread;
}
if (active) {
if (!queued &&
!z_is_t1_higher_prio_than_t2(th, _current)) {
th = _current;
}
if (!should_preempt(th, _current_cpu->swap_ok)) {
th = _current;
}
}
/* Put _current back into the queue */
if (th != _current && active && !z_is_idle_thread_object(_current) &&
!queued) {
_priq_run_add(&_kernel.ready_q.runq, _current);
z_mark_thread_as_queued(_current);
}
/* Take the new _current out of the queue */
if (z_is_thread_queued(th)) {
_priq_run_remove(&_kernel.ready_q.runq, th);
}
z_mark_thread_as_not_queued(th);
return th;
#endif
}
#ifdef CONFIG_TIMESLICING
static int slice_time;
static int slice_max_prio;
#ifdef CONFIG_SWAP_NONATOMIC
/* If z_swap() isn't atomic, then it's possible for a timer interrupt
* to try to timeslice away _current after it has already pended
* itself but before the corresponding context switch. Treat that as
* a noop condition in z_time_slice().
*/
static struct k_thread *pending_current;
#endif
void z_reset_time_slice(void)
{
/* Add the elapsed time since the last announced tick to the
* slice count, as we'll see those "expired" ticks arrive in a
* FUTURE z_time_slice() call.
*/
if (slice_time != 0) {
_current_cpu->slice_ticks = slice_time + z_clock_elapsed();
z_set_timeout_expiry(slice_time, false);
}
}
void k_sched_time_slice_set(s32_t slice, int prio)
{
LOCKED(&sched_spinlock) {
_current_cpu->slice_ticks = 0;
slice_time = z_ms_to_ticks(slice);
slice_max_prio = prio;
z_reset_time_slice();
}
}
static inline int sliceable(struct k_thread *t)
{
return is_preempt(t)
&& !z_is_prio_higher(t->base.prio, slice_max_prio)
&& !z_is_idle_thread_object(t)
&& !z_is_thread_timeout_active(t);
}
/* Called out of each timer interrupt */
void z_time_slice(int ticks)
{
#ifdef CONFIG_SWAP_NONATOMIC
if (pending_current == _current) {
z_reset_time_slice();
return;
}
pending_current = NULL;
#endif
if (slice_time && sliceable(_current)) {
if (ticks >= _current_cpu->slice_ticks) {
z_move_thread_to_end_of_prio_q(_current);
z_reset_time_slice();
} else {
_current_cpu->slice_ticks -= ticks;
}
} else {
_current_cpu->slice_ticks = 0;
}
}
#endif
static void update_cache(int preempt_ok)
{
#ifndef CONFIG_SMP
struct k_thread *th = next_up();
if (should_preempt(th, preempt_ok)) {
#ifdef CONFIG_TIMESLICING
if (th != _current) {
z_reset_time_slice();
}
#endif
_kernel.ready_q.cache = th;
} else {
_kernel.ready_q.cache = _current;
}
#else
/* The way this works is that the CPU record keeps its
* "cooperative swapping is OK" flag until the next reschedule
* call or context switch. It doesn't need to be tracked per
* thread because if the thread gets preempted for whatever
* reason the scheduler will make the same decision anyway.
*/
_current_cpu->swap_ok = preempt_ok;
#endif
}
void z_add_thread_to_ready_q(struct k_thread *thread)
{
LOCKED(&sched_spinlock) {
_priq_run_add(&_kernel.ready_q.runq, thread);
z_mark_thread_as_queued(thread);
update_cache(0);
#if defined(CONFIG_SMP) && defined(CONFIG_SCHED_IPI_SUPPORTED)
z_arch_sched_ipi();
#endif
}
}
void z_move_thread_to_end_of_prio_q(struct k_thread *thread)
{
LOCKED(&sched_spinlock) {
if (z_is_thread_queued(thread)) {
_priq_run_remove(&_kernel.ready_q.runq, thread);
}
_priq_run_add(&_kernel.ready_q.runq, thread);
z_mark_thread_as_queued(thread);
update_cache(thread == _current);
}
}
void z_remove_thread_from_ready_q(struct k_thread *thread)
{
LOCKED(&sched_spinlock) {
if (z_is_thread_queued(thread)) {
_priq_run_remove(&_kernel.ready_q.runq, thread);
z_mark_thread_as_not_queued(thread);
}
update_cache(thread == _current);
}
}
static void pend(struct k_thread *thread, _wait_q_t *wait_q, s32_t timeout)
{
z_remove_thread_from_ready_q(thread);
z_mark_thread_as_pending(thread);
if (wait_q != NULL) {
thread->base.pended_on = wait_q;
z_priq_wait_add(&wait_q->waitq, thread);
}
if (timeout != K_FOREVER) {
s32_t ticks = _TICK_ALIGN + z_ms_to_ticks(timeout);
z_add_thread_timeout(thread, ticks);
}
sys_trace_thread_pend(thread);
}
void z_pend_thread(struct k_thread *thread, _wait_q_t *wait_q, s32_t timeout)
{
__ASSERT_NO_MSG(thread == _current || is_thread_dummy(thread));
pend(thread, wait_q, timeout);
}
static _wait_q_t *pended_on(struct k_thread *thread)
{
__ASSERT_NO_MSG(thread->base.pended_on);
return thread->base.pended_on;
}
ALWAYS_INLINE struct k_thread *z_find_first_thread_to_unpend(_wait_q_t *wait_q,
struct k_thread *from)
{
ARG_UNUSED(from);
struct k_thread *ret = NULL;
LOCKED(&sched_spinlock) {
ret = _priq_wait_best(&wait_q->waitq);
}
return ret;
}
ALWAYS_INLINE void z_unpend_thread_no_timeout(struct k_thread *thread)
{
LOCKED(&sched_spinlock) {
_priq_wait_remove(&pended_on(thread)->waitq, thread);
z_mark_thread_as_not_pending(thread);
}
thread->base.pended_on = NULL;
}
#ifdef CONFIG_SYS_CLOCK_EXISTS
/* Timeout handler for *_thread_timeout() APIs */
void z_thread_timeout(struct _timeout *to)
{
struct k_thread *th = CONTAINER_OF(to, struct k_thread, base.timeout);
if (th->base.pended_on != NULL) {
z_unpend_thread_no_timeout(th);
}
z_mark_thread_as_started(th);
z_mark_thread_as_not_suspended(th);
z_ready_thread(th);
}
#endif
int z_pend_curr_irqlock(u32_t key, _wait_q_t *wait_q, s32_t timeout)
{
pend(_current, wait_q, timeout);
#if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC)
pending_current = _current;
int ret = z_swap_irqlock(key);
LOCKED(&sched_spinlock) {
if (pending_current == _current) {
pending_current = NULL;
}
}
return ret;
#else
return z_swap_irqlock(key);
#endif
}
int z_pend_curr(struct k_spinlock *lock, k_spinlock_key_t key,
_wait_q_t *wait_q, s32_t timeout)
{
#if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC)
pending_current = _current;
#endif
pend(_current, wait_q, timeout);
return z_swap(lock, key);
}
struct k_thread *z_unpend_first_thread(_wait_q_t *wait_q)
{
struct k_thread *t = z_unpend1_no_timeout(wait_q);
if (t != NULL) {
(void)z_abort_thread_timeout(t);
}
return t;
}
void z_unpend_thread(struct k_thread *thread)
{
z_unpend_thread_no_timeout(thread);
(void)z_abort_thread_timeout(thread);
}
/* Priority set utility that does no rescheduling, it just changes the
* run queue state, returning true if a reschedule is needed later.
*/
bool z_set_prio(struct k_thread *thread, int prio)
{
bool need_sched = 0;
LOCKED(&sched_spinlock) {
need_sched = z_is_thread_ready(thread);
if (need_sched) {
/* Don't requeue on SMP if it's the running thread */
if (!IS_ENABLED(CONFIG_SMP) || z_is_thread_queued(thread)) {
_priq_run_remove(&_kernel.ready_q.runq, thread);
thread->base.prio = prio;
_priq_run_add(&_kernel.ready_q.runq, thread);
} else {
thread->base.prio = prio;
}
update_cache(1);
} else {
thread->base.prio = prio;
}
}
sys_trace_thread_priority_set(thread);
return need_sched;
}
void z_thread_priority_set(struct k_thread *thread, int prio)
{
bool need_sched = z_set_prio(thread, prio);
if (IS_ENABLED(CONFIG_SMP) &&
!IS_ENABLED(CONFIG_SCHED_IPI_SUPPORTED)) {
z_sched_ipi();
}
if (need_sched && _current->base.sched_locked == 0) {
z_reschedule_unlocked();
}
}
static inline int resched(u32_t key)
{
#ifdef CONFIG_SMP
_current_cpu->swap_ok = 0;
#endif
return z_arch_irq_unlocked(key) && !z_arch_is_in_isr();
}
void z_reschedule(struct k_spinlock *lock, k_spinlock_key_t key)
{
if (resched(key.key)) {
z_swap(lock, key);
} else {
k_spin_unlock(lock, key);
}
}
void z_reschedule_irqlock(u32_t key)
{
if (resched(key)) {
z_swap_irqlock(key);
} else {
irq_unlock(key);
}
}
void k_sched_lock(void)
{
LOCKED(&sched_spinlock) {
z_sched_lock();
}
}
void k_sched_unlock(void)
{
#ifdef CONFIG_PREEMPT_ENABLED
__ASSERT(_current->base.sched_locked != 0, "");
__ASSERT(!z_arch_is_in_isr(), "");
LOCKED(&sched_spinlock) {
++_current->base.sched_locked;
update_cache(0);
}
K_DEBUG("scheduler unlocked (%p:%d)\n",
_current, _current->base.sched_locked);
z_reschedule_unlocked();
#endif
}
#ifdef CONFIG_SMP
struct k_thread *z_get_next_ready_thread(void)
{
struct k_thread *ret = 0;
LOCKED(&sched_spinlock) {
ret = next_up();
}
return ret;
}
#endif
/* Just a wrapper around _current = xxx with tracing */
static inline void set_current(struct k_thread *new_thread)
{
_current = new_thread;
}
#ifdef CONFIG_USE_SWITCH
void *z_get_next_switch_handle(void *interrupted)
{
_current->switch_handle = interrupted;
z_check_stack_sentinel();
#ifdef CONFIG_SMP
LOCKED(&sched_spinlock) {
struct k_thread *th = next_up();
if (_current != th) {
#ifdef CONFIG_TIMESLICING
z_reset_time_slice();
#endif
_current_cpu->swap_ok = 0;
set_current(th);
#ifdef SPIN_VALIDATE
/* Changed _current! Update the spinlock
* bookeeping so the validation doesn't get
* confused when the "wrong" thread tries to
* release the lock.
*/
z_spin_lock_set_owner(&sched_spinlock);
#endif
}
}
#else
set_current(z_get_next_ready_thread());
#endif
/* Some architectures don't have a working IPI, so the best we
* can do there is check the abort status of the current
* thread here on ISR exit
*/
if (IS_ENABLED(CONFIG_SMP) &&
!IS_ENABLED(CONFIG_SCHED_IPI_SUPPORTED)) {
z_sched_ipi();
}
return _current->switch_handle;
}
#endif
ALWAYS_INLINE void z_priq_dumb_add(sys_dlist_t *pq, struct k_thread *thread)
{
struct k_thread *t;
__ASSERT_NO_MSG(!z_is_idle_thread_object(thread));
SYS_DLIST_FOR_EACH_CONTAINER(pq, t, base.qnode_dlist) {
if (z_is_t1_higher_prio_than_t2(thread, t)) {
sys_dlist_insert(&t->base.qnode_dlist,
&thread->base.qnode_dlist);
return;
}
}
sys_dlist_append(pq, &thread->base.qnode_dlist);
}
void z_priq_dumb_remove(sys_dlist_t *pq, struct k_thread *thread)
{
#if defined(CONFIG_SWAP_NONATOMIC) && defined(CONFIG_SCHED_DUMB)
if (pq == &_kernel.ready_q.runq && thread == _current &&
z_is_thread_prevented_from_running(thread)) {
return;
}
#endif
__ASSERT_NO_MSG(!z_is_idle_thread_object(thread));
sys_dlist_remove(&thread->base.qnode_dlist);
}
struct k_thread *z_priq_dumb_best(sys_dlist_t *pq)
{
struct k_thread *t = NULL;
sys_dnode_t *n = sys_dlist_peek_head(pq);
if (n != NULL) {
t = CONTAINER_OF(n, struct k_thread, base.qnode_dlist);
}
return t;
}
bool z_priq_rb_lessthan(struct rbnode *a, struct rbnode *b)
{
struct k_thread *ta, *tb;
ta = CONTAINER_OF(a, struct k_thread, base.qnode_rb);
tb = CONTAINER_OF(b, struct k_thread, base.qnode_rb);
if (z_is_t1_higher_prio_than_t2(ta, tb)) {
return true;
} else if (z_is_t1_higher_prio_than_t2(tb, ta)) {
return false;
} else {
return ta->base.order_key < tb->base.order_key ? 1 : 0;
}
}
void z_priq_rb_add(struct _priq_rb *pq, struct k_thread *thread)
{
struct k_thread *t;
__ASSERT_NO_MSG(!z_is_idle_thread_object(thread));
thread->base.order_key = pq->next_order_key++;
/* Renumber at wraparound. This is tiny code, and in practice
* will almost never be hit on real systems. BUT on very
* long-running systems where a priq never completely empties
* AND that contains very large numbers of threads, it can be
* a latency glitch to loop over all the threads like this.
*/
if (!pq->next_order_key) {
RB_FOR_EACH_CONTAINER(&pq->tree, t, base.qnode_rb) {
t->base.order_key = pq->next_order_key++;
}
}
rb_insert(&pq->tree, &thread->base.qnode_rb);
}
void z_priq_rb_remove(struct _priq_rb *pq, struct k_thread *thread)
{
#if defined(CONFIG_SWAP_NONATOMIC) && defined(CONFIG_SCHED_SCALABLE)
if (pq == &_kernel.ready_q.runq && thread == _current &&
z_is_thread_prevented_from_running(thread)) {
return;
}
#endif
__ASSERT_NO_MSG(!z_is_idle_thread_object(thread));
rb_remove(&pq->tree, &thread->base.qnode_rb);
if (!pq->tree.root) {
pq->next_order_key = 0;
}
}
struct k_thread *z_priq_rb_best(struct _priq_rb *pq)
{
struct k_thread *t = NULL;
struct rbnode *n = rb_get_min(&pq->tree);
if (n != NULL) {
t = CONTAINER_OF(n, struct k_thread, base.qnode_rb);
}
return t;
}
#ifdef CONFIG_SCHED_MULTIQ
# if (K_LOWEST_THREAD_PRIO - K_HIGHEST_THREAD_PRIO) > 31
# error Too many priorities for multiqueue scheduler (max 32)
# endif
#endif
ALWAYS_INLINE void z_priq_mq_add(struct _priq_mq *pq, struct k_thread *thread)
{
int priority_bit = thread->base.prio - K_HIGHEST_THREAD_PRIO;
sys_dlist_append(&pq->queues[priority_bit], &thread->base.qnode_dlist);
pq->bitmask |= BIT(priority_bit);
}
ALWAYS_INLINE void z_priq_mq_remove(struct _priq_mq *pq, struct k_thread *thread)
{
#if defined(CONFIG_SWAP_NONATOMIC) && defined(CONFIG_SCHED_MULTIQ)
if (pq == &_kernel.ready_q.runq && thread == _current &&
z_is_thread_prevented_from_running(thread)) {
return;
}
#endif
int priority_bit = thread->base.prio - K_HIGHEST_THREAD_PRIO;
sys_dlist_remove(&thread->base.qnode_dlist);
if (sys_dlist_is_empty(&pq->queues[priority_bit])) {
pq->bitmask &= ~BIT(priority_bit);
}
}
struct k_thread *z_priq_mq_best(struct _priq_mq *pq)
{
if (!pq->bitmask) {
return NULL;
}
struct k_thread *t = NULL;
sys_dlist_t *l = &pq->queues[__builtin_ctz(pq->bitmask)];
sys_dnode_t *n = sys_dlist_peek_head(l);
if (n != NULL) {
t = CONTAINER_OF(n, struct k_thread, base.qnode_dlist);
}
return t;
}
int z_unpend_all(_wait_q_t *wait_q)
{
int need_sched = 0;
struct k_thread *th;
while ((th = z_waitq_head(wait_q)) != NULL) {
z_unpend_thread(th);
z_ready_thread(th);
need_sched = 1;
}
return need_sched;
}
void z_sched_init(void)
{
#ifdef CONFIG_SCHED_DUMB
sys_dlist_init(&_kernel.ready_q.runq);
#endif
#ifdef CONFIG_SCHED_SCALABLE
_kernel.ready_q.runq = (struct _priq_rb) {
.tree = {
.lessthan_fn = z_priq_rb_lessthan,
}
};
#endif
#ifdef CONFIG_SCHED_MULTIQ
for (int i = 0; i < ARRAY_SIZE(_kernel.ready_q.runq.queues); i++) {
sys_dlist_init(&_kernel.ready_q.runq.queues[i]);
}
#endif
#ifdef CONFIG_TIMESLICING
k_sched_time_slice_set(CONFIG_TIMESLICE_SIZE,
CONFIG_TIMESLICE_PRIORITY);
#endif
}
int z_impl_k_thread_priority_get(k_tid_t thread)
{
return thread->base.prio;
}
#ifdef CONFIG_USERSPACE
static inline int z_vrfy_k_thread_priority_get(k_tid_t thread)
{
Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
return z_impl_k_thread_priority_get(thread);
}
#include <syscalls/k_thread_priority_get_mrsh.c>
#endif
void z_impl_k_thread_priority_set(k_tid_t tid, int prio)
{
/*
* Use NULL, since we cannot know what the entry point is (we do not
* keep track of it) and idle cannot change its priority.
*/
Z_ASSERT_VALID_PRIO(prio, NULL);
__ASSERT(!z_arch_is_in_isr(), "");
struct k_thread *thread = (struct k_thread *)tid;
z_thread_priority_set(thread, prio);
}
#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_thread_priority_set(k_tid_t thread, int prio)
{
Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
Z_OOPS(Z_SYSCALL_VERIFY_MSG(_is_valid_prio(prio, NULL),
"invalid thread priority %d", prio));
Z_OOPS(Z_SYSCALL_VERIFY_MSG((s8_t)prio >= thread->base.prio,
"thread priority may only be downgraded (%d < %d)",
prio, thread->base.prio));
z_impl_k_thread_priority_set(thread, prio);
}
#include <syscalls/k_thread_priority_set_mrsh.c>
#endif
#ifdef CONFIG_SCHED_DEADLINE
void z_impl_k_thread_deadline_set(k_tid_t tid, int deadline)
{
struct k_thread *th = tid;
LOCKED(&sched_spinlock) {
th->base.prio_deadline = k_cycle_get_32() + deadline;
if (z_is_thread_queued(th)) {
_priq_run_remove(&_kernel.ready_q.runq, th);
_priq_run_add(&_kernel.ready_q.runq, th);
}
}
}
#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_thread_deadline_set(k_tid_t tid, int deadline)
{
struct k_thread *thread = (struct k_thread *)thread_p;
Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
Z_OOPS(Z_SYSCALL_VERIFY_MSG(deadline > 0,
"invalid thread deadline %d",
(int)deadline));
z_impl_k_thread_deadline_set((k_tid_t)thread, deadline);
}
#include <syscalls/k_thread_deadline_set_mrsh.c>
#endif
#endif
void z_impl_k_yield(void)
{
__ASSERT(!z_arch_is_in_isr(), "");
if (!z_is_idle_thread_object(_current)) {
LOCKED(&sched_spinlock) {
if (!IS_ENABLED(CONFIG_SMP) ||
z_is_thread_queued(_current)) {
_priq_run_remove(&_kernel.ready_q.runq,
_current);
}
_priq_run_add(&_kernel.ready_q.runq, _current);
z_mark_thread_as_queued(_current);
update_cache(1);
}
}
z_swap_unlocked();
}
#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_yield(void)
{
z_impl_k_yield();
}
#include <syscalls/k_yield_mrsh.c>
#endif
static s32_t z_tick_sleep(s32_t ticks)
{
#ifdef CONFIG_MULTITHREADING
u32_t expected_wakeup_time;
__ASSERT(!z_arch_is_in_isr(), "");
K_DEBUG("thread %p for %d ticks\n", _current, ticks);
/* wait of 0 ms is treated as a 'yield' */
if (ticks == 0) {
k_yield();
return 0;
}
ticks += _TICK_ALIGN;
expected_wakeup_time = ticks + z_tick_get_32();
/* Spinlock purely for local interrupt locking to prevent us
* from being interrupted while _current is in an intermediate
* state. Should unify this implementation with pend().
*/
struct k_spinlock local_lock = {};
k_spinlock_key_t key = k_spin_lock(&local_lock);
#if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC)
pending_current = _current;
#endif
z_remove_thread_from_ready_q(_current);
z_add_thread_timeout(_current, ticks);
z_mark_thread_as_suspended(_current);
(void)z_swap(&local_lock, key);
__ASSERT(!z_is_thread_state_set(_current, _THREAD_SUSPENDED), "");
ticks = expected_wakeup_time - z_tick_get_32();
if (ticks > 0) {
return ticks;
}
#endif
return 0;
}
s32_t z_impl_k_sleep(int ms)
{
s32_t ticks;
ticks = z_ms_to_ticks(ms);
ticks = z_tick_sleep(ticks);
return __ticks_to_ms(ticks);
}
#ifdef CONFIG_USERSPACE
static inline s32_t z_vrfy_k_sleep(int ms)
{
return z_impl_k_sleep(ms);
}
#include <syscalls/k_sleep_mrsh.c>
#endif
s32_t z_impl_k_usleep(int us)
{
s32_t ticks;
ticks = z_us_to_ticks(us);
ticks = z_tick_sleep(ticks);
return __ticks_to_us(ticks);
}
#ifdef CONFIG_USERSPACE