forked from brightmart/text_classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patha8_dynamic_memory_network.py
392 lines (365 loc) · 24.2 KB
/
a8_dynamic_memory_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
# -*- coding: utf-8 -*-
"""
Dynamic Memory Network: a.Input Module,b.Question Module,c.Episodic Memory Module,d.Answer Module.
1.Input Module: encode raw texts into vector representation
2.Question Module: encode question into vector representation
3.Episodic Memory Module: with inputs,it chooses which parts of inputs to focus on through the attention mechanism,
taking into account of question and previous memory====>it poduce a 'memory' vecotr.
4.Answer Module:generate an answer from the final memory vector.
"""
import tensorflow as tf
import numpy as np
import tensorflow.contrib as tf_contrib
import numpy as np
from tensorflow.contrib import rnn
class DynamicMemoryNetwork:
def __init__(self, num_classes, learning_rate, batch_size, decay_steps, decay_rate, sequence_length, story_length,
vocab_size, embed_size,hidden_size, is_training, num_pass=2,use_gated_gru=True,decode_with_sequences=False,multi_label_flag=False,
initializer=tf.random_normal_initializer(stddev=0.1),clip_gradients=5.0,l2_lambda=0.0001):
"""init all hyperparameter here"""
# set hyperparamter
self.num_classes = num_classes
self.batch_size = batch_size
self.sequence_length = sequence_length
self.vocab_size = vocab_size
self.embed_size = embed_size
self.is_training = is_training
self.learning_rate = tf.Variable(learning_rate, trainable=False, name="learning_rate")
self.learning_rate_decay_half_op = tf.assign(self.learning_rate, self.learning_rate * 0.5)
self.initializer = initializer
self.multi_label_flag = multi_label_flag
self.hidden_size = hidden_size
self.clip_gradients=clip_gradients
self.story_length=story_length
#self.dimension=self.hidden_size*2 if self.use_bi_lstm else self.hidden_size #if use bi-lstm, set dimension value, so it can be used later for parameter.
self.num_pass=num_pass #number of pass to run for episodic memory module. for example, num_pass=2
self.use_gated_gru=use_gated_gru #if this is True. we will use gated gru as our 'Memory Update Mechanism'
self.decode_with_sequences=decode_with_sequences
self.l2_lambda=l2_lambda
# add placeholder (X,label)
self.story=tf.placeholder(tf.int32,[None,self.story_length,self.sequence_length],name="story")
self.query = tf.placeholder(tf.int32, [None, self.sequence_length], name="question")
self.answer_single = tf.placeholder(tf.int32, [None,], name="input_y") # y:[None,num_classes]
self.answer_multilabel = tf.placeholder(tf.float32, [None, self.num_classes],name="input_y_multilabel") # y:[None,num_classes]. this is for multi-label classification only.
self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")
self.global_step = tf.Variable(0, trainable=False, name="Global_Step")
self.epoch_step = tf.Variable(0, trainable=False, name="Epoch_Step")
self.epoch_increment = tf.assign(self.epoch_step, tf.add(self.epoch_step, tf.constant(1)))
self.decay_steps, self.decay_rate = decay_steps, decay_rate
self.instantiate_weights()
self.logits = self.inference() # [None, self.label_size]. main computation graph is here.
self.predictions = tf.argmax(self.logits, 1, name="predictions") # shape:[None,]
if not self.multi_label_flag:
correct_prediction = tf.equal(tf.cast(self.predictions, tf.int32),self.answer_single) # tf.argmax(self.logits, 1)-->[batch_size]
self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name="Accuracy") # shape=()
else:
self.accuracy = tf.constant(0.5) # fuke accuracy. (you can calcuate accuracy outside of graph using method calculate_accuracy(...) in train.py)
if not is_training:
return
if multi_label_flag:
print("going to use multi label loss.")
self.loss_val = self.loss_multilabel()
else:
print("going to use single label loss.")
self.loss_val = self.loss()
self.train_op = self.train()
def inference(self):
"""main computation graph here: a.Input Module,b.Question Module,c.Episodic Memory Module,d.Answer Module """
# 1.Input Module
self.input_module() #[batch_size,story_length,hidden_size
# 2.question module
self.question_module() #[batch_size,hidden_size]
# 3.episodic memory module
self.episodic_memory_module() #[batch_size,hidden_size]
# 4. answer module
logits=self.answer_module() #[batch_size,vocab_size]
return logits
def input_module(self):
"""encode raw texts into vector representation"""
story_embedding=tf.nn.embedding_lookup(self.Embedding,self.story) # [batch_size,story_length,sequence_length,embed_size]
story_embedding=tf.reshape(story_embedding,(self.batch_size,self.story_length,self.sequence_length*self.embed_size))
hidden_state=tf.ones((self.batch_size,self.hidden_size),dtype=tf.float32)
cell = rnn.GRUCell(self.hidden_size)
self.story_embedding,hidden_state=tf.nn.dynamic_rnn(cell,story_embedding,dtype=tf.float32,scope="input_module")
def question_module(self):
"""
input:tokens of query:[batch_size,sequence_length]
:return: representation of question:[batch_size,hidden_size]
"""
query_embedding = tf.nn.embedding_lookup(self.Embedding, self.query) # [batch_size,sequence_length,embed_size]
cell=rnn.GRUCell(self.hidden_size)
_,self.query_embedding=tf.nn.dynamic_rnn(cell,query_embedding,dtype=tf.float32,scope="question_module") #query_embedding:[batch_size,hidden_size]
def episodic_memory_module(self):#input(story):[batch_size,story_length,hidden_size]
"""
episodic memory module
1.combine features
1.attention mechansim using gate function.take fact representation c,question q,previous memory m_previous
2.use gated-gru to update hidden state
3.set last hidden state as episode result
4.use gru to update final memory using episode result
input: story(from input module):[batch_size,story_length,hidden_size]
output: last hidden state:[batch_size,hidden_size]
"""
candidate_inputs=tf.split(self.story_embedding,self.story_length,axis=1) # a list. length is: story_length. each element is:[batch_size,1,embedding_size]
candidate_list=[tf.squeeze(x,axis=1) for x in candidate_inputs] # a list. length is: story_length. each element is:[batch_size ,embedding_size]
m_current=self.query_embedding
h_current = tf.zeros((self.batch_size, self.hidden_size))
for pass_number in range(self.num_pass):#for each candidate sentence in the list,do loop.
# 1. attention mechansim.take fact representation c,question q,previous memory m_previous
g = self.attention_mechanism_parallel(self.story_embedding, m_current,self.query_embedding,pass_number) # [batch_size,story_length]
# 2.below is Memory Update Mechanism
if self.use_gated_gru: #use gated gru to update episode. this is default method.
g = tf.split(g, self.story_length,axis=1) # a list. length is: sequence_length. each element is:[batch_size,1]
# 2.1 use gated-gru to update hidden state
for i,c_current in enumerate(candidate_list):
g_current=g[i] #[batch_size,1]
h_current=self.gated_gru(c_current,h_current,g_current) #h_current:[batch_size,hidden_size]. g[i] represent score( a scalar) for current candidate sentence:c_current.
# 2.2 assign last hidden state to e(episodic)
e_i=h_current #[batch_size,hidden_size]
else: #use weighted sum to get episode(e.g. used in question answering)
p_gate=tf.nn.softmax(g,dim=1) #[batch_size,story_length]. compute weight
p_gate=tf.expand_dims(p_gate,axis=2) #[batch_size,story_length,1]
e_i=tf.multiply(p_gate,self.story_embedding) #[batch_size,story_length,hidden_size]
e_i=tf.reduce_sum(e_i,axis=1) #[batch_size,story_length]
#3. use gru to update episodic memory m_i
m_current=self.gru_cell(e_i, m_current,"gru_episodic_memory") #[batch_size,hidden_size]
self.m_T=m_current #[batch_size,hidden_size]
def answer_module(self):
""" Answer Module:generate an answer from the final memory vector.
Input:
hidden state from episodic memory module:[batch_size,hidden_size]
question:[batch_size, embedding_size]
"""
steps=self.sequence_length if self.decode_with_sequences else 1 #decoder for a list of tokens with sequence. e.g."x1 x2 x3 x4..."
a=self.m_T #init hidden state
y_pred=tf.zeros((self.batch_size,self.hidden_size)) #TODO usually we will init this as a special token '<GO>', you can change this line by pass embedding of '<GO>' from outside.
logits_list=[]
logits_return=None
for i in range(steps):
cell = rnn.GRUCell(self.hidden_size)
y_previous_q=tf.concat([y_pred,self.query_embedding],axis=1) #[batch_hidden_size*2]
_, a = cell( y_previous_q,a)
logits=tf.layers.dense(a,units=self.num_classes) #[batch_size,vocab_size]
logits_list.append(logits)
if self.decode_with_sequences:#need to get sequences.
logits_return = tf.stack(logits_list, axis=1) # [batch_size,sequence_length,num_classes]
else:#only need to get an answer, not sequences
logits_return = logits_list[0] #[batcj_size,num_classes]
return logits_return
def gated_gru(self,c_current,h_previous,g_current):
"""
gated gru to get updated hidden state
:param c_current: [batch_size,embedding_size]
:param h_previous:[batch_size,hidden_size]
:param g_current: [batch_size,1]
:return h_current: [batch_size,hidden_size]
"""
# 1.compute candidate hidden state using GRU.
h_candidate=self.gru_cell(c_current, h_previous,"gru_candidate_sentence") #[batch_size,hidden_size]
# 2.combine candidate hidden state and previous hidden state using weight(a gate) to get updated hidden state.
h_current=tf.multiply(g_current,h_candidate)+tf.multiply(1-g_current,h_previous) #[batch_size,hidden_size]
return h_current
def attention_mechanism_parallel(self,c_full,m,q,i):
""" parallel implemtation of gate function given a list of candidate sentence, a query, and previous memory.
Input:
c_full: candidate fact. shape:[batch_size,story_length,hidden_size]
m: previous memory. shape:[batch_size,hidden_size]
q: question. shape:[batch_size,hidden_size]
Output: a scalar score (in batch). shape:[batch_size,story_length]
"""
q=tf.expand_dims(q,axis=1) #[batch_size,1,hidden_size]
m=tf.expand_dims(m,axis=1) #[batch_size,1,hidden_size]
# 1.define a large feature vector that captures a variety of similarities between input,memory and question vector: z(c,m,q)
c_q_elementwise=tf.multiply(c_full,q) #[batch_size,story_length,hidden_size]
c_m_elementwise=tf.multiply(c_full,m) #[batch_size,story_length,hidden_size]
c_q_minus=tf.abs(tf.subtract(c_full,q)) #[batch_size,story_length,hidden_size]
c_m_minus=tf.abs(tf.subtract(c_full,m)) #[batch_size,story_length,hidden_size]
# c_transpose Wq
c_w_q=self.x1Wx2_parallel(c_full,q,"c_w_q"+str(i)) #[batch_size,story_length,hidden_size]
c_w_m=self.x1Wx2_parallel(c_full,m,"c_w_m"+str(i)) #[batch_size,story_length,hidden_size]
# c_transposeWm
q_tile=tf.tile(q,[1,self.story_length,1]) #[batch_size,story_length,hidden_size]
m_tile=tf.tile(m,[1,self.story_length,1]) #[batch_size,story_length,hidden_size]
z=tf.concat([c_full,m_tile,q_tile,c_q_elementwise,c_m_elementwise,c_q_minus,c_m_minus,c_w_q,c_w_m],2) #[batch_size,story_length,hidden_size*9]
# 2. two layer feed foward
g=tf.layers.dense(z,self.hidden_size*3,activation=tf.nn.tanh) #[batch_size,story_length,hidden_size*3]
g=tf.layers.dense(g,1,activation=tf.nn.sigmoid) #[batch_size,story_length,1]
g=tf.squeeze(g,axis=2) #[batch_size,story_length]
return g
def x1Wx2_parallel(self,x1,x2,scope):
"""
:param x1: [batch_size,story_length,hidden_size]
:param x2: [batch_size,1,hidden_size]
:param scope: a string
:return: [batch_size,story_length,hidden_size]
"""
with tf.variable_scope(scope):
x1=tf.reshape(x1,shape=(self.batch_size,-1)) #[batch_size,story_length*hidden_size]
x1_w=tf.layers.dense(x1,self.story_length*self.hidden_size,use_bias=False) #[self.hidden_size, story_length*self.hidden_size]
x1_w_expand=tf.expand_dims(x1_w,axis=2) #[batch_size,story_length*self.hidden_size,1]
x1_w_x2=tf.matmul(x1_w_expand,x2) #[batch_size,story_length*self.hidden_size,hidden_size]
x1_w_x2=tf.reshape(x1_w_x2,shape=(self.batch_size,self.story_length,self.hidden_size,self.hidden_size))
x1_w_x2=tf.reduce_sum(x1_w_x2,axis=3) #[batch_size,story_length,hidden_size]
return x1_w_x2
def gru_cell(self, Xt, h_t_minus_1,variable_scope):
"""
single step of gru
:param Xt: Xt:[batch_size,hidden_size]
:param h_t_minus_1:[batch_size,hidden_size]
:return:[batch_size,hidden_size]
"""
with tf.variable_scope(variable_scope):
# 1.update gate: decides how much past information is kept and how much new information is added.
z_t = tf.nn.sigmoid(tf.matmul(Xt, self.W_z) + tf.matmul(h_t_minus_1,self.U_z) + self.b_z) # z_t:[batch_size,self.hidden_size]
# 2.reset gate: controls how much the past state contributes to the candidate state.
r_t = tf.nn.sigmoid(tf.matmul(Xt, self.W_r) + tf.matmul(h_t_minus_1,self.U_r) + self.b_r) # r_t:[batch_size,self.hidden_size]
# 3.compute candiate state h_t~
h_t_candiate = tf.nn.tanh(tf.matmul(Xt, self.W_h) +r_t * (tf.matmul(h_t_minus_1, self.U_h)) + self.b_h) # h_t_candiate:[batch_size,self.hidden_size]
# 4.compute new state: a linear combine of pervious hidden state and the current new state h_t~
h_t = (1 - z_t) * h_t_minus_1 + z_t * h_t_candiate # h_t:[batch_size,hidden_size]
return h_t
def loss(self, l2_lambda=0.0001): # 0.001
with tf.name_scope("loss"):
# input: `logits`:[batch_size, num_classes], and `labels`:[batch_size]
# output: A 1-D `Tensor` of length `batch_size` of the same type as `logits` with the softmax cross entropy loss.
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=self.answer_single,logits=self.logits); # sigmoid_cross_entropy_with_logits.#losses=tf.nn.softmax_cross_entropy_with_logits(labels=self.input_y,logits=self.logits)
# print("1.sparse_softmax_cross_entropy_with_logits.losses:",losses) # shape=(?,)
loss = tf.reduce_mean(losses) # print("2.loss.loss:", loss) #shape=()
l2_losses = tf.add_n([tf.nn.l2_loss(v) for v in tf.trainable_variables() if ('bias' not in v.name ) and ('alpha' not in v.name)]) * l2_lambda
loss = loss + l2_losses
return loss
def loss_multilabel(self, l2_lambda=0.0001): #0.0001 this loss function is for multi-label classification
with tf.name_scope("loss"):
# input_y:shape=(?, 1999); logits:shape=(?, 1999)
# let `x = logits`, `z = labels`. The logistic loss is:z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
losses = tf.nn.sigmoid_cross_entropy_with_logits(labels=self.answer_multilabel,logits=self.logits); #[None,self.num_classes]. losses=tf.nn.softmax_cross_entropy_with_logits(labels=self.input__y,logits=self.logits)
#losses=self.smoothing_cross_entropy(self.logits,self.answer_multilabel,self.num_classes) #shape=(512,)
losses = tf.reduce_sum(losses, axis=1) # shape=(?,). loss for all data in the batch
loss = tf.reduce_mean(losses) # shape=(). average loss in the batch
l2_losses = tf.add_n([tf.nn.l2_loss(v) for v in tf.trainable_variables() if('bias' not in v.name ) and ('alpha' not in v.name)]) * l2_lambda
loss = loss + l2_losses
return loss
def smoothing_cross_entropy(self,logits, labels, vocab_size, confidence=0.9): #confidence = 1.0 - label_smoothing. where label_smooth=0.1. from http://github.com/tensorflow/tensor2tensor
"""Cross entropy with label smoothing to limit over-confidence."""
with tf.name_scope("smoothing_cross_entropy", [logits, labels]):
# Low confidence is given to all non-true labels, uniformly.
low_confidence = (1.0 - confidence) / tf.to_float(vocab_size - 1)
# Normalizing constant is the best cross-entropy value with soft targets.
# We subtract it just for readability, makes no difference on learning.
normalizing = -(confidence * tf.log(confidence) + tf.to_float(vocab_size - 1) * low_confidence * tf.log(low_confidence + 1e-20))
# Soft targets.
soft_targets = tf.one_hot(
tf.cast(labels, tf.int32),
depth=vocab_size,
on_value=confidence,
off_value=low_confidence)
xentropy = tf.nn.softmax_cross_entropy_with_logits(
logits=logits, labels=soft_targets)
return xentropy - normalizing
def train(self):
"""based on the loss, use SGD to update parameter"""
learning_rate = tf.train.exponential_decay(self.learning_rate, self.global_step, self.decay_steps,
self.decay_rate, staircase=True)
self.learning_rate_=learning_rate
#noise_std_dev = tf.constant(0.3) / (tf.sqrt(tf.cast(tf.constant(1) + self.global_step, tf.float32))) #gradient_noise_scale=noise_std_dev
train_op = tf_contrib.layers.optimize_loss(self.loss_val, global_step=self.global_step,learning_rate=learning_rate, optimizer="Adam",clip_gradients=self.clip_gradients)
return train_op
#:param s_t: vector representation of current input(is a sentence). shape:[batch_size,sequence_length,embed_size]
#:param h: value(hidden state).shape:[hidden_size]
#:param w: key.shape:[hidden_size]
def instantiate_weights(self):
"""define all weights here"""
with tf.variable_scope("gru_cell"):
self.W_z = tf.get_variable("W_z", shape=[self.embed_size, self.hidden_size], initializer=self.initializer)
self.U_z = tf.get_variable("U_z", shape=[self.embed_size, self.hidden_size], initializer=self.initializer)
self.b_z = tf.get_variable("b_z", shape=[self.hidden_size])
# GRU parameters:reset gate related
self.W_r = tf.get_variable("W_r", shape=[self.embed_size, self.hidden_size], initializer=self.initializer)
self.U_r = tf.get_variable("U_r", shape=[self.embed_size, self.hidden_size], initializer=self.initializer)
self.b_r = tf.get_variable("b_r", shape=[self.hidden_size])
self.W_h = tf.get_variable("W_h", shape=[self.embed_size, self.hidden_size], initializer=self.initializer)
self.U_h = tf.get_variable("U_h", shape=[self.embed_size, self.hidden_size], initializer=self.initializer)
self.b_h = tf.get_variable("b_h", shape=[self.hidden_size])
with tf.variable_scope("embedding_projection"): # embedding matrix
self.Embedding = tf.get_variable("Embedding", shape=[self.vocab_size, self.embed_size],initializer=self.initializer)
# test: learn to count. weight of query and story is different
#two step to test
#step1. run train function to train the model. it will save checkpoint
#step2. run predict function to make a prediction based on the model restore from the checkpoint.
def train():
# below is a function test; if you use this for text classifiction, you need to tranform sentence to indices of vocabulary first. then feed data to the graph.
num_classes = 15
learning_rate = 0.001
batch_size = 8
decay_steps = 1000
decay_rate = 0.9
sequence_length = 10
vocab_size = 10000
embed_size = 100
hidden_size = 100
is_training = True
story_length = 3
dropout_keep_prob = 1
model = DynamicMemoryNetwork(num_classes, learning_rate, batch_size, decay_steps, decay_rate, sequence_length,
story_length, vocab_size, embed_size, hidden_size, is_training,
multi_label_flag=False)
ckpt_dir = 'checkpoint_dmn/dummy_test/'
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(1500):
# input_x should be:[batch_size, num_sentences,self.sequence_length]
story = np.random.randn(batch_size, story_length, sequence_length)
story[story > 0] = 1
story[story <= 0] = 0
query = np.random.randn(batch_size, sequence_length) # [batch_size, sequence_length]
query[query > 0] = 1
query[query <= 0] = 0
answer_single = np.sum(query, axis=1) + np.round(0.1 * np.sum(np.sum(story, axis=1),
axis=1)) # [batch_size].e.g. np.array([1, 0, 1, 1, 1, 2, 1, 1])
loss, acc, predict, _ = sess.run(
[model.loss_val, model.accuracy, model.predictions, model.train_op],
feed_dict={model.query: query, model.story: story, model.answer_single: answer_single,
model.dropout_keep_prob: dropout_keep_prob})
print(i, "query:", query, "=====================>")
print(i, "loss:", loss, "acc:", acc, "label:", answer_single, "prediction:", predict)
if i % 300 == 0:
save_path = ckpt_dir + "model.ckpt"
saver.save(sess, save_path, global_step=i * 300)
def predict():
num_classes = 15
learning_rate = 0.001
batch_size = 8
decay_steps = 1000
decay_rate = 0.9
sequence_length = 10
vocab_size = 10000
embed_size = 100
hidden_size = 100
is_training = False
story_length = 3
dropout_keep_prob = 1
model = DynamicMemoryNetwork(num_classes, learning_rate, batch_size, decay_steps, decay_rate, sequence_length,
story_length, vocab_size, embed_size, hidden_size, is_training,
multi_label_flag=False, block_size=20)
ckpt_dir = 'checkpoint_dmn/dummy_test/'
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver.restore(sess, tf.train.latest_checkpoint(ckpt_dir))
for i in range(100):
story = np.random.randn(batch_size, story_length, sequence_length)
story[story > 0] = 1
story[story <= 0] = 0
query = np.random.randn(batch_size, sequence_length) # [batch_size, sequence_length]
query[query > 0] = 1
query[query <= 0] = 0
answer_single = np.sum(query, axis=1) + np.round(0.1 * np.sum(np.sum(story, axis=1),axis=1)) # [batch_size].e.g. np.array([1, 0, 1, 1, 1, 2, 1, 1])
predict = sess.run([model.predictions], feed_dict={model.query: query, model.story: story,
model.dropout_keep_prob: dropout_keep_prob})
print(i, "query:", query, "=====================>")
print(i, "label:", answer_single, "prediction:", predict)
#1.train the model
#train()
#2.make a prediction based on the learned model.
#predict()