Skip to content

Latest commit

 

History

History
 
 

mnist

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MNIST classification

Trains a simple convolutional network on the MNIST dataset.

You can run this code and even modify it directly in Google Colab, no installation required:

https://colab.research.google.com/github/google/flax/blob/main/examples/mnist/mnist.ipynb

Requirements

  • TensorFlow dataset mnist will be downloaded and prepared automatically, if necessary

Example output

Name Epochs Walltime Top-1 accuracy Metrics Workdir
default 10 7.7m 99.17% tfhub.dev gs://flax_public/examples/mnist/default
I0828 08:51:41.821526 139971964110656 train.py:130] train epoch: 10, loss: 0.0097, accuracy: 99.69
I0828 08:51:42.248714 139971964110656 train.py:180] eval epoch: 10, loss: 0.0299, accuracy: 99.14

How to run

python main.py --workdir=/tmp/mnist --config=configs/default.py

Overriding Hyperparameter configurations

MNIST example allows specifying a hyperparameter configuration by the means of setting --config flag. Configuration flag is defined using config_flags. config_flags allows overriding configuration fields. This can be done as follows:

python main.py \
--workdir=/tmp/mnist --config=configs/default.py \
--config.learning_rate=0.05 --config.num_epochs=5