forked from simongog/sdsl-lite
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcst_sada.hpp
758 lines (694 loc) · 30.4 KB
/
cst_sada.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
/* sdsl - succinct data structures library
Copyright (C) 2009-2013 Simon Gog
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/ .
*/
/*! \file cst_sada.hpp
\brief cst_sada.hpp contains an implementation of Sadakane's CST.
\author Simon Gog
*/
#ifndef INCLUDED_SDSL_CST_SADA
#define INCLUDED_SDSL_CST_SADA
#include "int_vector.hpp"
#include "suffix_tree_helper.hpp"
#include "algorithms.hpp"
#include "iterators.hpp"
#include "lcp_support_sada.hpp"
#include "select_support_mcl.hpp"
#include "bp_support.hpp"
#include "bp_support_sada.hpp"
#include "csa_sada.hpp" // for std initialization of cst_sada
#include "cst_iterators.hpp"
#include "cst_sct3.hpp" // this CST is used in the construction
#include "util.hpp"
#include <iostream>
#include <algorithm>
#include <cassert>
#include <cstring> // for strlen
#include <iomanip>
#include <iterator>
namespace sdsl
{
//! A class for the Compressed Suffix Tree (CST) proposed by Sadakane.
/*!
* \tparam t_csa Type of a CSA (member of this type is accessible via
* member `csa`, default class is sdsl::csa_sada).
* \tparam t_lcp Type of a LCP structure (member is accessible via member
* `lcp`, default class is sdsl::lcp_support_sada),
* \tparam t_bp_support Type of a BPS structure (member accessible via member
* `bp_support`, default class is sdsl::bp_support_sada),
* \tparam t_rank_10 Type of a rank structure for the 2-bit pattern `10`
* (accessible via member `bp_rank_10`, default class is
* sdsl::rank_support_v5)
* \tparam t_select_10 Type of a select structure for the 2-bit pattern `10`
* (accessible via member \f$bp\_select\_10\f$, default
* class is sdsl::select_support_mcl).
*
* It also contains a sdsl::bit_vector which represents the balanced
* parentheses sequence of the suffix tree. This bit_vector can be accessed
* via member `bp`.
*
* A node `v` of the `csa_sada` is represented by an integer `i` which
* corresponds to the position of the opening parenthesis of the parentheses
* pair \f$(i,\mu(i))\f$ that corresponds to `v` in `bp`.
*
* \par Reference
* Kunihiko Sadakane:
* Compressed Suffix Trees with Full Functionality.
* Theory Comput. Syst. 41(4): 589-607 (2007)
*
* @ingroup cst
*/
template<class t_csa = csa_sada<>,
class t_lcp = lcp_support_sada<>,
class t_bp_support = bp_support_sada<>,
class t_rank_10 = rank_support_v5<10,2>,
class t_select_10 = select_support_mcl<10,2>
>
class cst_sada
{
public:
typedef cst_dfs_const_forward_iterator<cst_sada> const_iterator;
typedef cst_bottom_up_const_forward_iterator<cst_sada> const_bottom_up_iterator;
typedef typename t_csa::size_type size_type;
typedef ptrdiff_t difference_type;
typedef t_csa csa_type;
typedef typename t_lcp::template type<cst_sada> lcp_type;
typedef typename t_csa::char_type char_type;
typedef size_type node_type; //!< Type for the nodes in the tree.
typedef t_bp_support bp_support_type;
typedef t_rank_10 rank_10_type;
typedef t_select_10 select_10_type;
typedef typename t_csa::alphabet_type::comp_char_type comp_char_type;
typedef typename t_csa::alphabet_type::sigma_type sigma_type;
typedef typename t_csa::alphabet_category alphabet_category;
typedef cst_tag index_category;
private:
t_csa m_csa; // suffix array
lcp_type m_lcp; // lcp information
bit_vector m_bp; // balanced parentheses sequence for suffix tree
bp_support_type m_bp_support; // support for the balanced parentheses sequence
rank_10_type m_bp_rank10; // rank_support for leaves, i.e. "10" bit pattern
select_10_type m_bp_select10;// select_support for leaves, i.e. "10" bit pattern
/* Get the number of leaves that are in the subtree rooted at the first child of v +
* number of leafs in the subtrees rooted at the children of parent(v) which precede v in the tree.
*/
size_type inorder(node_type v)const {
return m_bp_rank10(m_bp_support.find_close(v+1)+1);
}
void copy(const cst_sada& cst) {
m_csa = cst.m_csa;
copy_lcp(m_lcp, cst.m_lcp, *this);
m_bp = cst.m_bp;
m_bp_support = cst.m_bp_support;
m_bp_support.set_vector(&m_bp);
m_bp_rank10 = cst.m_bp_rank10;
m_bp_rank10.set_vector(&m_bp);
m_bp_select10 = cst.m_bp_select10;
m_bp_select10.set_vector(&m_bp);
}
public:
const t_csa& csa = m_csa;
const lcp_type& lcp = m_lcp;
const bit_vector& bp = m_bp;
const bp_support_type& bp_support = m_bp_support;
const rank_10_type& bp_rank_10 = m_bp_rank10;
const select_10_type& bp_select_10 = m_bp_select10;
//! Default constructor
cst_sada() { }
//! Copy constructor
cst_sada(const cst_sada& cst) {
copy(cst);
}
//! Construct CST from file_map
cst_sada(cache_config& config) {
{
mm::log("bps-dfs-begin");
cst_sct3<> temp_cst(config, true);
m_bp.resize(4*(temp_cst.bp.size()/2));
util::set_to_value(m_bp, 0);
size_type idx=0;
for (cst_sct3<>::const_iterator it=temp_cst.begin(), end=temp_cst.end(); it!=end; ++it) {
if (1 == it.visit())
m_bp[idx] = 1;
if (temp_cst.is_leaf(*it) and temp_cst.root()!= *it)
++idx;
++idx;
}
m_bp.resize(idx);
mm::log("bps-dfs-end");
}
mm::log("bpss-dfs-begin");
util::assign(m_bp_support, bp_support_type(&m_bp));
util::init_support(m_bp_rank10, &m_bp);
util::init_support(m_bp_select10, &m_bp);
mm::log("bpss-dfs-end");
mm::log("bpss-clcp-begin");
cache_config tmp_config(false, config.dir, config.id, config.file_map);
construct_lcp(m_lcp, *this, tmp_config);
config.file_map = tmp_config.file_map;
mm::log("bpss-clcp-end");
load_from_cache(m_csa, util::class_to_hash(m_csa), config);
}
//! Number of leaves in the suffix tree.
/*! Required for the Container Concept of the STL.
* \sa max_size, empty
*/
size_type size()const {
return m_csa.size();
}
//! Returns the maximal lenght of text for that a suffix tree can be build.
/*! Required for the Container Concept of the STL.
* \sa size
*/
static size_type max_size() {
return t_csa::max_size();
}
//! Returns if the data strucutre is empty.
/*! Required for the Container Concept of the STL.
* \sa size
*/
bool empty()const {
return m_csa.empty();
}
//! Swap method for cst_sada
/*! The swap method can be defined in terms of assignment.
This requires three assignments, each of which, for a container type, is linear
in the container's size. In a sense, then, a.swap(b) is redundant.
This implementation guaranties a run-time complexity that is constant rather than linear.
\param cst cst_sada to swap.
Required for the Assignable Conecpt of the STL.
*/
void swap(cst_sada& cst) {
if (this != &cst) {
m_csa.swap(cst.m_csa);
m_bp.swap(cst.m_bp);
util::swap_support(m_bp_support, cst.m_bp_support, &m_bp, &(cst.m_bp));
util::swap_support(m_bp_rank10, cst.m_bp_rank10, &m_bp, &(cst.m_bp));
util::swap_support(m_bp_select10, cst.m_bp_select10, &m_bp, &(cst.m_bp));
// anything else has to be swapped before swapping lcp
swap_lcp(m_lcp, cst.m_lcp, *this, cst);
}
}
//! Returns a const_iterator to the first element.
/*! Required for the STL Container Concept.
* \sa end
*/
const_iterator begin()const {
if (0 == m_bp.size()) // special case: tree is uninitialized
return end();
return const_iterator(this, root(), false, true);
}
//! Returns a const_iterator to the element after the last element.
/*! Required for the STL Container Concept.
* \sa begin.
*/
const_iterator end()const {
return const_iterator(this, root(), true, false);
}
//! Returns an iterator to the first element of a bottom-up traversal of the tree.
const_bottom_up_iterator begin_bottom_up()const {
if (0 == m_bp.size()) // special case: tree is uninitialized
return end_bottom_up();
return const_bottom_up_iterator(this, leftmost_leaf_in_the_subtree(root()));
}
//! Returns an iterator to the element after the last element of a bottom-up traversal of the tree.
const_bottom_up_iterator end_bottom_up()const {
return const_bottom_up_iterator(this, root(), false);
}
//! Assignment Operator.
/*!
* Required for the Assignable Concept of the STL.
*/
cst_sada& operator=(const cst_sada& cst) {
if (this != &cst) {
copy(cst);
}
return *this;
}
//! Serialize to a stream.
/*! \param out Outstream to write the data structure.
* \return The number of written bytes.
*/
size_type serialize(std::ostream& out, structure_tree_node* v=nullptr, std::string name="")const {
structure_tree_node* child = structure_tree::add_child(v, name, util::class_name(*this));
size_type written_bytes = 0;
written_bytes += m_csa.serialize(out, child, "csa");
written_bytes += m_lcp.serialize(out, child, "lcp");
written_bytes += m_bp.serialize(out, child, "bp");
written_bytes += m_bp_support.serialize(out, child, "bp_support");
written_bytes += m_bp_rank10.serialize(out, child, "bp_rank_10");
written_bytes += m_bp_select10.serialize(out, child, "bp_select_10");
structure_tree::add_size(child, written_bytes);
return written_bytes;
}
//! Load from a stream.
/*! \param in Inputstream to load the data structure from.
*/
void load(std::istream& in) {
m_csa.load(in);
load_lcp(m_lcp, in, *this);
m_bp.load(in);
m_bp_support.load(in, &m_bp);
m_bp_rank10.load(in, &m_bp);
m_bp_select10.load(in, &m_bp);
}
/*! \defgroup cst_sada_tree_methods Tree methods of cst_sada */
/* @{ */
//! Return the root of the suffix tree.
/*!
* \par Time complexity
* \f$ \Order{1} \f$
*/
node_type root() const {
return 0;
}
//! Decide if a node is a leaf in the suffix tree.
/*!
* \param v A valid node of a cst_sada.
* \returns A boolean value indicating if v is a leaf.
* \par Time complexity
* \f$ \Order{1} \f$
*/
bool is_leaf(node_type v)const {
assert(m_bp[v]==1); // assert that v is a valid node of the suffix tree
// if there is a closing parenthesis at position v+1, the node is a leaf
return !m_bp[v+1];
}
//! Return the i-th leaf (1-based from left to right) of the suffix tree.
/*!
* \param i 1-based position of the leaf. \f$1\leq i\leq csa.size()\f$.
* \return The i-th leave.
* \par Time complexity
* \f$ \Order{1} \f$
* \pre \f$ 1 \leq i \leq csa.size() \f$
*/
node_type select_leaf(size_type i)const {
assert(i > 0 and i <= m_csa.size());
// -1 as select(i) returns the postion of the 0 of pattern 10
return m_bp_select10.select(i)-1;
}
//! Returns the depth of node v.
/*!
* \param v A valid node of the suffix tree.
* \return The depth of the node.
* \par Time complexity
* \f$ \Order{\lcpaccess \vee \saaccess} \f$
*/
size_type depth(node_type v)const {
if (v == root()) // if v is the root
return 0;
if (is_leaf(v)) { // if v is a leave
size_type i = m_bp_rank10(v); // get the index in the suffix array
return m_csa.size() - m_csa[i];
}
assert(inorder(v)>0);
return m_lcp[inorder(v)];
}
//! Returns the node depth of node v.
/*!
* \param v A valid node of a cst_sada.
* \return The node depth of node v.
* \par Time complexity
* \f$ \Order{1} \f$
*/
size_type node_depth(node_type v)const {
// -2 as the root() we assign depth=0 to the root
return (m_bp_support.rank(v)<<1)-v-2;
}
//! Calculate the number of leaves in the subtree rooted at node v.
/*! \param v A valid node of the suffix tree.
* \return The number of leaves in the subtree rooted at node v.
* \par Time complexity
* \f$ \Order{1} \f$
*
* This method is used e.g. in the algorithm::count method.
*/
size_type size(node_type v)const {
size_type r = m_bp_support.find_close(v);
return m_bp_rank10(r+1) - m_bp_rank10(v);
}
//! Calculates the leftmost leaf in the subtree rooted at node v.
/*! \param v A valid node of the suffix tree.
* \return The leftmost leaf in the subtree rooted at node v.
* \par Time complexity
* \f$ \Order{1} \f$
*/
node_type leftmost_leaf(const node_type& v)const {
return m_bp_select10(m_bp_rank10(v)+1)-1;
}
//! Calculates the rightmost leaf in the subtree rooted at node v.
/*!\param v A valid node of the suffix tree.
* \return The rightmost leaf in the subtree rooted at node v.
* \par Time complexity
* \f$ \Order{1} \f$
*/
node_type rightmost_leaf(const node_type& v)const {
size_type r = m_bp_support.find_close(v);
return m_bp_select10(m_bp_rank10(r+1))-1;
}
//!Calculates the index of the leftmost leaf in the corresponding suffix array.
/*!\param v A valid node of the suffix tree.
* \return The index of the leftmost leaf in the corresponding suffix array.
* \par Time complexity
* \f$ \Order{1} \f$
* \par Note
* lb is an abbreviation for ,,left bound''
*/
size_type lb(const node_type& v)const {
return m_bp_rank10(v);
}
//! Calculates the index of the rightmost leaf in the corresponding suffix array.
/*! \param v A valid node of the suffix tree.
* \return The index of the rightmost leaf in the corresponding suffix array.
* \par Time complexity
* \f$ \Order{1} \f$
* \par Note
* rb is an abbreviation for ,,right bound''
*/
size_type rb(const node_type& v)const {
size_type r = m_bp_support.find_close(v);
return m_bp_rank10(r+1)-1;
}
//! Calculate the parent node of a node v.
/*! \param v A valid node of the suffix tree.
* \return The parent node of v or root() if v equals root().
* \par Time complexity
* \f$ \Order{1} \f$
*/
node_type parent(node_type v) const {
assert(m_bp[v]==1); // assert a valid node
if (v == root())
return root();
else {
return m_bp_support.enclose(v);
}
}
//! Return a proxy object which allows iterating over the children of a node
/*! \param v A valid node of the suffix tree.
* \return The proxy object of v containing all children
* \par Time complexity
* \f$ \Order{1}\f$
*/
cst_node_child_proxy<cst_sada> children(const node_type& v) const {
return cst_node_child_proxy<cst_sada>(*this,v);
}
//! Returns the next sibling of node v.
/*!
* \param v A valid node v of the suffix tree.
* \return The next (right) sibling of node v or root() if v has no next (right) sibling.
* \par Time complexity
* \f$ \Order{1} \f$
*/
node_type sibling(node_type v)const {
if (v==root())
return root();
node_type sib = m_bp_support.find_close(v)+1;
if (m_bp[sib])
return sib;
else
return root();
}
//! Get the child w of node v which edge label (v,w) starts with character c.
/*
* \param v A valid tree node of the cst.
* \param c First character of the edge label from v to the desired child.
* \param char_pos Reference which will hold the position (0-based) of the matching char c in the sorted text/suffix array.
* \return The child node w which edge label (v,w) starts with c or root() if it does not exist.
* \par Time complexity
* \f$ \Order( (\saaccess+\isaaccess) \cdot \sigma + \lcpaccess) \f$
* \par Note
* With range median mimimum queries (RMMQ) one can code this operation in \f$\log \sigma \f$ time
*/
node_type child(node_type v, const char_type c, size_type& char_pos)const {
if (is_leaf(v)) // if v is a leaf = (), v has no child
return root();
// else v = ( ( ))
comp_char_type cc = m_csa.char2comp[c];
if (cc==0 and c!=0) // TODO: aendere char2comp so ab, dass man diesen sonderfall nicht braucht
return root();
size_type char_ex_max_pos = m_csa.C[cc+1], char_inc_min_pos = m_csa.C[cc];
size_type d = depth(v); // time complexity: \lcpaccess
size_type res = v+1;
while (true) {
if (is_leaf(res)) {
char_pos = get_char_pos(m_bp_rank10(res), d, m_csa);
} else {
char_pos = get_char_pos(inorder(res), d, m_csa);
}
if (char_pos >= char_ex_max_pos) // if the current char is lex. greater than the searched char: exit
return root();
if (char_pos >= char_inc_min_pos) // if the current char is lex. equal with the
return res;
res = m_bp_support.find_close(res)+1;
if (!m_bp[res]) // closing parenthesis: there exists no next child
return root();
}
}
//! Get the child w of node v which edge label (v,w) starts with character c.
// \sa child(node_type v, const char_type c, size_type &char_pos)
node_type child(node_type v, const char_type c) {
size_type char_pos;
return child(v, c, char_pos);
}
//! Get the i-th child of a node v.
/*!
* \param v A valid tree node of the cst.
* \param i 1-based Index of the child which should be returned. \f$i \geq 1\f$.
* \return The i-th child node of v or root() if v has no i-th child.
* \par Time complexity
* \f$ \Order{i} \f$ for \f$ i \leq \sigma \f$
* \pre \f$ 1 \leq i \leq degree(v) \f$
*/
node_type select_child(node_type v, size_type i)const {
if (is_leaf(v)) // if v is a leave, v has no child
return root();
size_type res = v+1;
while (i > 1) {
res = m_bp_support.find_close(res)+1;
if (!m_bp[res]) {// closing parenthesis: there exists no next child
return root();
}
--i;
}
return res;
}
//! Returns the d-th character (1-based indexing) of the edge-label pointing to v.
/*!\param v The node at which the edge path ends.
* \param d The position (1-based indexing) of the requested character on the edge path from the root to v. \f$ d > 0 \wedge d < depth(v) \f$
* \return The character at position d on the edge path from the root to v.
* \par Time complexity
* \f$ \Order{ \log\sigma + (\saaccess+\isaaccess) } \f$
* \pre \f$ 1 \leq d \leq depth(v) \f$
*/
char_type edge(node_type v, size_type d)const {
if (d < 1 or d > depth(v)) {
throw std::out_of_range("OUT_OF_RANGE_ERROR: "+util::demangle(typeid(this).name())+" cst_sada<>::edge(node_type v, size_type d). d == 0 or d > depth(v)!");
}
size_type i = 0;// index of the first suffix in the subtree of v
if (is_leaf(v)) { // if v is a leave
i = m_bp_rank10(v); // get the index in the suffix array
} else {
i = inorder(v);
}
size_type order = get_char_pos(i, d-1, m_csa);
size_type c_begin = 1, c_end = ((size_type)m_csa.sigma)+1, mid;
while (c_begin < c_end) {
mid = (c_begin+c_end)>>1;
if (m_csa.C[mid] <= order) {
c_begin = mid+1;
} else {
c_end = mid;
}
}
return m_csa.comp2char[c_begin-1];
}
//! Calculate the lowest common ancestor (lca) of two nodes v and w of the suffix tree.
/*!
* \param v The first node for which the lca with the second node should be computed.
* \param w The second node for which the lca with the first node should be computed.
* \return A node that is the lowest common ancestor of v and w in the suffix tree.
* \par Time complexity
* \f$ \Order{\rrenclose}\ \f$
*/
node_type lca(node_type v, node_type w)const {
assert(m_bp[v] == 1 and m_bp[w] == 1);
if (v > w) {
std::swap(v,w);
} else if (v==w) {
return v;
}
if (v == root())
return root();
return m_bp_support.double_enclose(v, w);
}
//! Compute the suffix link of node v.
/*!
* \param v A valid node of a cst_sada.
* \return The suffix link of node v.
* \par Time complexity
* \f$ \Order{ 1 } \f$
*/
node_type sl(node_type v)const {
if (v == root())
return root();
// get leftmost leaf in the tree rooted at v
size_type left = m_bp_rank10(v);
if (is_leaf(v)) {
return select_leaf(m_csa.psi[left]+1);
}
// get the rightmost leaf in the tree rooted at v
size_type right = m_bp_rank10(m_bp_support.find_close(v))-1;
assert(left < right);
node_type left_leaf = select_leaf(m_csa.psi[left]+1);
node_type right_leaf= select_leaf(m_csa.psi[right]+1);
return lca(left_leaf, right_leaf);
}
//! Compute the Weiner link of node v and character c.
/*
* \param v A valid not of a cst_sada.
* \param c The character which should be prepended to the string of the current node.
* \return root() if the Weiner link of (v, c) does not exist, otherwise the Weiner link is returned.
* \par Time complexity
* \f$ \Order{ t_{rank\_bwt} + t_{lca}}\f$
*/
node_type wl(node_type v, const char_type c) const {
// get leftmost leaf in the tree rooted at v
size_type left = m_bp_rank10(v);
// get the rightmost leaf in the tree rooted at v
size_type right = is_leaf(v) ? left : m_bp_rank10(m_bp_support.find_close(v))-1;
size_type c_left = m_csa.rank_bwt(left, c);
size_type c_right = m_csa.rank_bwt(right+1, c);
if (c_left == c_right) // there exists no Weiner link
return root();
if (c_left+1 == c_right)
return select_leaf(m_csa.C[m_csa.char2comp[c]] + c_left + 1);
else {
size_type left = m_csa.C[m_csa.char2comp[c]] + c_left;
size_type right = m_csa.C[m_csa.char2comp[c]] + c_right - 1;
assert(left < right);
node_type left_leaf = select_leaf(left+1);
node_type right_leaf= select_leaf(right+1);
return lca(left_leaf, right_leaf);
}
}
//! Compute the suffix number of a leaf node v.
/*!\param v A valid leaf node of a cst_sada.
* \return The suffix array value corresponding to the leaf node v.
* \par Time complexity
* \f$ \Order{ \saaccess } \f$
*/
size_type sn(node_type v)const {
assert(is_leaf(v));
// count the leaves left to leaf v
return m_csa[m_bp_rank10(v)];
}
//! Computes a unique identification number for a node of the suffix tree in the range [0..nodes()-1]
/*!
*\param v A valid node of a cst_sada.
* \return A unique identification number for the node v in the range [0..nodes()-1]
* \par Time complexity
* \f$ \Order{1} \f$
* \sa inv_id(size_type id)
*/
size_type id(node_type v)const {
// v+1 is < m_bp.size(), as v is the position of an open parenthesis
if (m_bp[v+1]) { // case (a) inner node
return size() + (m_bp_support.rank(v) - 1) - m_bp_rank10(v);
} else { // case (b) leaf
return m_bp_rank10(v);
}
}
//! Computes the node for such that id(v)=id.
/*!
* \param id An id in the range [0..nodes()-1].
* \return A node v of the CST such that id(v)=id.
* \par Time complexity
* \f$ \Order{1} \f$ for leaves and \f$ \log n \f$ for inner nodes
* \sa id(node_type v)
*/
size_type inv_id(size_type id) {
if (id < size()) { // the corresponding node is a leaf
return select_leaf(id+1);
} else { // the corresponding node is a inner node
id = id + 1 - size();
// solved by binary search; TODO: can be done in constant time by using a select structure on the bitpattern 11
size_type lb = 0, rb = m_bp.size(); // lb inclusive, rb exclusive
// invariant: arg(lb) < id, arg(rb)>= id
while (rb-lb > 1) {
size_type mid = lb + (rb-lb)/2; // mid \in [0..m_bp.size()-1]
if (m_bp[mid] == 0 and m_bp[mid-1] == 1) { // if we are ``half on a leaf''
++mid; //we step one to the right to include it
}
// get the number of open inner nodes before position mid, i.e. arg(mid)
size_type mid_id = m_bp_support.rank(mid-1) - m_bp_rank10(mid); // Note: mid-1 is valid of mid is of type ``size_type'' as us the parameter of rank
if (mid_id < id) {
lb = mid;
} else { // mid_id >= x
rb = mid;
}
}
return lb;
}
}
//! Get the number of nodes of the suffix tree.
/*
* \return The number of nodes of the suffix tree.
* \par Time complexity
* \f$ \Order{1} \f$
*/
size_type nodes()const {
return m_bp.size()>>1;
}
//! Get the node in the suffix tree which corresponds to the lcp-interval [lb..rb]
/* \param lb Left bound of the lcp-interval [lb..rb] (inclusive).
* \param rb Right bound of the lcp-interval [lb..rb] (inclusive).
*\ return The node in the suffix tree corresponding lcp-interval [lb..rb]
*/
node_type node(size_type lb, size_type rb) const {
return lca(select_leaf(lb+1), select_leaf(rb+1));
}
//! Get the number of children of a node v.
/*!
* \param v A valid node v of a cst_sada.
* \returns The number of children of node v.
* \par Time complexity
* \f$ \Order{\sigma} \f$
*/
size_type degree(node_type v)const {
size_type res = 0;
v = v+1;
while (m_bp[v]) { // found open parentheses
++res;
v = m_bp_support.find_close(v)+1;
}
return res;
}
//! Maps an index i to the position in TLCP where LCP[i] can be found
/*!
* \param i The index in the LCP array
* \return The corresponding position in the TLCP array
*/
size_type tlcp_idx(size_type i) const {
size_type ii = 0;
if (i > 0) {
size_type ipos = m_bp_select10(i) - 1; // -1 as select returns the position of the zero
size_type ip1pos = m_bp_select10(i+1) - 1;// " " " " " " " " "
ii = m_bp_support.double_enclose(ipos, ip1pos);
}
ii = m_bp_support.find_close(ii);
// all right, as bp[ii] = 0
return ii - m_bp_support.rank(ii) - m_bp_rank10(ii);
}
/* @} */
};
} // end namespace sdsl
#endif