forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mbcache.c
675 lines (597 loc) · 18.2 KB
/
mbcache.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
/*
* linux/fs/mbcache.c
* (C) 2001-2002 Andreas Gruenbacher, <[email protected]>
*/
/*
* Filesystem Meta Information Block Cache (mbcache)
*
* The mbcache caches blocks of block devices that need to be located
* by their device/block number, as well as by other criteria (such
* as the block's contents).
*
* There can only be one cache entry in a cache per device and block number.
* Additional indexes need not be unique in this sense. The number of
* additional indexes (=other criteria) can be hardwired at compile time
* or specified at cache create time.
*
* Each cache entry is of fixed size. An entry may be `valid' or `invalid'
* in the cache. A valid entry is in the main hash tables of the cache,
* and may also be in the lru list. An invalid entry is not in any hashes
* or lists.
*
* A valid cache entry is only in the lru list if no handles refer to it.
* Invalid cache entries will be freed when the last handle to the cache
* entry is released. Entries that cannot be freed immediately are put
* back on the lru list.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/hash.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/mbcache.h>
#ifdef MB_CACHE_DEBUG
# define mb_debug(f...) do { \
printk(KERN_DEBUG f); \
printk("\n"); \
} while (0)
#define mb_assert(c) do { if (!(c)) \
printk(KERN_ERR "assertion " #c " failed\n"); \
} while(0)
#else
# define mb_debug(f...) do { } while(0)
# define mb_assert(c) do { } while(0)
#endif
#define mb_error(f...) do { \
printk(KERN_ERR f); \
printk("\n"); \
} while(0)
#define MB_CACHE_WRITER ((unsigned short)~0U >> 1)
static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue);
MODULE_AUTHOR("Andreas Gruenbacher <[email protected]>");
MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
MODULE_LICENSE("GPL");
EXPORT_SYMBOL(mb_cache_create);
EXPORT_SYMBOL(mb_cache_shrink);
EXPORT_SYMBOL(mb_cache_destroy);
EXPORT_SYMBOL(mb_cache_entry_alloc);
EXPORT_SYMBOL(mb_cache_entry_insert);
EXPORT_SYMBOL(mb_cache_entry_release);
EXPORT_SYMBOL(mb_cache_entry_free);
EXPORT_SYMBOL(mb_cache_entry_get);
#if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
EXPORT_SYMBOL(mb_cache_entry_find_first);
EXPORT_SYMBOL(mb_cache_entry_find_next);
#endif
struct mb_cache {
struct list_head c_cache_list;
const char *c_name;
struct mb_cache_op c_op;
atomic_t c_entry_count;
int c_bucket_bits;
#ifndef MB_CACHE_INDEXES_COUNT
int c_indexes_count;
#endif
kmem_cache_t *c_entry_cache;
struct list_head *c_block_hash;
struct list_head *c_indexes_hash[0];
};
/*
* Global data: list of all mbcache's, lru list, and a spinlock for
* accessing cache data structures on SMP machines. The lru list is
* global across all mbcaches.
*/
static LIST_HEAD(mb_cache_list);
static LIST_HEAD(mb_cache_lru_list);
static DEFINE_SPINLOCK(mb_cache_spinlock);
static struct shrinker *mb_shrinker;
static inline int
mb_cache_indexes(struct mb_cache *cache)
{
#ifdef MB_CACHE_INDEXES_COUNT
return MB_CACHE_INDEXES_COUNT;
#else
return cache->c_indexes_count;
#endif
}
/*
* What the mbcache registers as to get shrunk dynamically.
*/
static int mb_cache_shrink_fn(int nr_to_scan, gfp_t gfp_mask);
static inline int
__mb_cache_entry_is_hashed(struct mb_cache_entry *ce)
{
return !list_empty(&ce->e_block_list);
}
static void
__mb_cache_entry_unhash(struct mb_cache_entry *ce)
{
int n;
if (__mb_cache_entry_is_hashed(ce)) {
list_del_init(&ce->e_block_list);
for (n=0; n<mb_cache_indexes(ce->e_cache); n++)
list_del(&ce->e_indexes[n].o_list);
}
}
static void
__mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask)
{
struct mb_cache *cache = ce->e_cache;
mb_assert(!(ce->e_used || ce->e_queued));
if (cache->c_op.free && cache->c_op.free(ce, gfp_mask)) {
/* free failed -- put back on the lru list
for freeing later. */
spin_lock(&mb_cache_spinlock);
list_add(&ce->e_lru_list, &mb_cache_lru_list);
spin_unlock(&mb_cache_spinlock);
} else {
kmem_cache_free(cache->c_entry_cache, ce);
atomic_dec(&cache->c_entry_count);
}
}
static void
__mb_cache_entry_release_unlock(struct mb_cache_entry *ce)
{
/* Wake up all processes queuing for this cache entry. */
if (ce->e_queued)
wake_up_all(&mb_cache_queue);
if (ce->e_used >= MB_CACHE_WRITER)
ce->e_used -= MB_CACHE_WRITER;
ce->e_used--;
if (!(ce->e_used || ce->e_queued)) {
if (!__mb_cache_entry_is_hashed(ce))
goto forget;
mb_assert(list_empty(&ce->e_lru_list));
list_add_tail(&ce->e_lru_list, &mb_cache_lru_list);
}
spin_unlock(&mb_cache_spinlock);
return;
forget:
spin_unlock(&mb_cache_spinlock);
__mb_cache_entry_forget(ce, GFP_KERNEL);
}
/*
* mb_cache_shrink_fn() memory pressure callback
*
* This function is called by the kernel memory management when memory
* gets low.
*
* @nr_to_scan: Number of objects to scan
* @gfp_mask: (ignored)
*
* Returns the number of objects which are present in the cache.
*/
static int
mb_cache_shrink_fn(int nr_to_scan, gfp_t gfp_mask)
{
LIST_HEAD(free_list);
struct list_head *l, *ltmp;
int count = 0;
spin_lock(&mb_cache_spinlock);
list_for_each(l, &mb_cache_list) {
struct mb_cache *cache =
list_entry(l, struct mb_cache, c_cache_list);
mb_debug("cache %s (%d)", cache->c_name,
atomic_read(&cache->c_entry_count));
count += atomic_read(&cache->c_entry_count);
}
mb_debug("trying to free %d entries", nr_to_scan);
if (nr_to_scan == 0) {
spin_unlock(&mb_cache_spinlock);
goto out;
}
while (nr_to_scan-- && !list_empty(&mb_cache_lru_list)) {
struct mb_cache_entry *ce =
list_entry(mb_cache_lru_list.next,
struct mb_cache_entry, e_lru_list);
list_move_tail(&ce->e_lru_list, &free_list);
__mb_cache_entry_unhash(ce);
}
spin_unlock(&mb_cache_spinlock);
list_for_each_safe(l, ltmp, &free_list) {
__mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
e_lru_list), gfp_mask);
}
out:
return (count / 100) * sysctl_vfs_cache_pressure;
}
/*
* mb_cache_create() create a new cache
*
* All entries in one cache are equal size. Cache entries may be from
* multiple devices. If this is the first mbcache created, registers
* the cache with kernel memory management. Returns NULL if no more
* memory was available.
*
* @name: name of the cache (informal)
* @cache_op: contains the callback called when freeing a cache entry
* @entry_size: The size of a cache entry, including
* struct mb_cache_entry
* @indexes_count: number of additional indexes in the cache. Must equal
* MB_CACHE_INDEXES_COUNT if the number of indexes is
* hardwired.
* @bucket_bits: log2(number of hash buckets)
*/
struct mb_cache *
mb_cache_create(const char *name, struct mb_cache_op *cache_op,
size_t entry_size, int indexes_count, int bucket_bits)
{
int m=0, n, bucket_count = 1 << bucket_bits;
struct mb_cache *cache = NULL;
if(entry_size < sizeof(struct mb_cache_entry) +
indexes_count * sizeof(((struct mb_cache_entry *) 0)->e_indexes[0]))
return NULL;
cache = kmalloc(sizeof(struct mb_cache) +
indexes_count * sizeof(struct list_head), GFP_KERNEL);
if (!cache)
goto fail;
cache->c_name = name;
cache->c_op.free = NULL;
if (cache_op)
cache->c_op.free = cache_op->free;
atomic_set(&cache->c_entry_count, 0);
cache->c_bucket_bits = bucket_bits;
#ifdef MB_CACHE_INDEXES_COUNT
mb_assert(indexes_count == MB_CACHE_INDEXES_COUNT);
#else
cache->c_indexes_count = indexes_count;
#endif
cache->c_block_hash = kmalloc(bucket_count * sizeof(struct list_head),
GFP_KERNEL);
if (!cache->c_block_hash)
goto fail;
for (n=0; n<bucket_count; n++)
INIT_LIST_HEAD(&cache->c_block_hash[n]);
for (m=0; m<indexes_count; m++) {
cache->c_indexes_hash[m] = kmalloc(bucket_count *
sizeof(struct list_head),
GFP_KERNEL);
if (!cache->c_indexes_hash[m])
goto fail;
for (n=0; n<bucket_count; n++)
INIT_LIST_HEAD(&cache->c_indexes_hash[m][n]);
}
cache->c_entry_cache = kmem_cache_create(name, entry_size, 0,
SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL, NULL);
if (!cache->c_entry_cache)
goto fail;
spin_lock(&mb_cache_spinlock);
list_add(&cache->c_cache_list, &mb_cache_list);
spin_unlock(&mb_cache_spinlock);
return cache;
fail:
if (cache) {
while (--m >= 0)
kfree(cache->c_indexes_hash[m]);
kfree(cache->c_block_hash);
kfree(cache);
}
return NULL;
}
/*
* mb_cache_shrink()
*
* Removes all cache entries of a device from the cache. All cache entries
* currently in use cannot be freed, and thus remain in the cache. All others
* are freed.
*
* @bdev: which device's cache entries to shrink
*/
void
mb_cache_shrink(struct block_device *bdev)
{
LIST_HEAD(free_list);
struct list_head *l, *ltmp;
spin_lock(&mb_cache_spinlock);
list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
struct mb_cache_entry *ce =
list_entry(l, struct mb_cache_entry, e_lru_list);
if (ce->e_bdev == bdev) {
list_move_tail(&ce->e_lru_list, &free_list);
__mb_cache_entry_unhash(ce);
}
}
spin_unlock(&mb_cache_spinlock);
list_for_each_safe(l, ltmp, &free_list) {
__mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
e_lru_list), GFP_KERNEL);
}
}
/*
* mb_cache_destroy()
*
* Shrinks the cache to its minimum possible size (hopefully 0 entries),
* and then destroys it. If this was the last mbcache, un-registers the
* mbcache from kernel memory management.
*/
void
mb_cache_destroy(struct mb_cache *cache)
{
LIST_HEAD(free_list);
struct list_head *l, *ltmp;
int n;
spin_lock(&mb_cache_spinlock);
list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
struct mb_cache_entry *ce =
list_entry(l, struct mb_cache_entry, e_lru_list);
if (ce->e_cache == cache) {
list_move_tail(&ce->e_lru_list, &free_list);
__mb_cache_entry_unhash(ce);
}
}
list_del(&cache->c_cache_list);
spin_unlock(&mb_cache_spinlock);
list_for_each_safe(l, ltmp, &free_list) {
__mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
e_lru_list), GFP_KERNEL);
}
if (atomic_read(&cache->c_entry_count) > 0) {
mb_error("cache %s: %d orphaned entries",
cache->c_name,
atomic_read(&cache->c_entry_count));
}
kmem_cache_destroy(cache->c_entry_cache);
for (n=0; n < mb_cache_indexes(cache); n++)
kfree(cache->c_indexes_hash[n]);
kfree(cache->c_block_hash);
kfree(cache);
}
/*
* mb_cache_entry_alloc()
*
* Allocates a new cache entry. The new entry will not be valid initially,
* and thus cannot be looked up yet. It should be filled with data, and
* then inserted into the cache using mb_cache_entry_insert(). Returns NULL
* if no more memory was available.
*/
struct mb_cache_entry *
mb_cache_entry_alloc(struct mb_cache *cache)
{
struct mb_cache_entry *ce;
atomic_inc(&cache->c_entry_count);
ce = kmem_cache_alloc(cache->c_entry_cache, GFP_KERNEL);
if (ce) {
INIT_LIST_HEAD(&ce->e_lru_list);
INIT_LIST_HEAD(&ce->e_block_list);
ce->e_cache = cache;
ce->e_used = 1 + MB_CACHE_WRITER;
ce->e_queued = 0;
}
return ce;
}
/*
* mb_cache_entry_insert()
*
* Inserts an entry that was allocated using mb_cache_entry_alloc() into
* the cache. After this, the cache entry can be looked up, but is not yet
* in the lru list as the caller still holds a handle to it. Returns 0 on
* success, or -EBUSY if a cache entry for that device + inode exists
* already (this may happen after a failed lookup, but when another process
* has inserted the same cache entry in the meantime).
*
* @bdev: device the cache entry belongs to
* @block: block number
* @keys: array of additional keys. There must be indexes_count entries
* in the array (as specified when creating the cache).
*/
int
mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev,
sector_t block, unsigned int keys[])
{
struct mb_cache *cache = ce->e_cache;
unsigned int bucket;
struct list_head *l;
int error = -EBUSY, n;
bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
cache->c_bucket_bits);
spin_lock(&mb_cache_spinlock);
list_for_each_prev(l, &cache->c_block_hash[bucket]) {
struct mb_cache_entry *ce =
list_entry(l, struct mb_cache_entry, e_block_list);
if (ce->e_bdev == bdev && ce->e_block == block)
goto out;
}
__mb_cache_entry_unhash(ce);
ce->e_bdev = bdev;
ce->e_block = block;
list_add(&ce->e_block_list, &cache->c_block_hash[bucket]);
for (n=0; n<mb_cache_indexes(cache); n++) {
ce->e_indexes[n].o_key = keys[n];
bucket = hash_long(keys[n], cache->c_bucket_bits);
list_add(&ce->e_indexes[n].o_list,
&cache->c_indexes_hash[n][bucket]);
}
error = 0;
out:
spin_unlock(&mb_cache_spinlock);
return error;
}
/*
* mb_cache_entry_release()
*
* Release a handle to a cache entry. When the last handle to a cache entry
* is released it is either freed (if it is invalid) or otherwise inserted
* in to the lru list.
*/
void
mb_cache_entry_release(struct mb_cache_entry *ce)
{
spin_lock(&mb_cache_spinlock);
__mb_cache_entry_release_unlock(ce);
}
/*
* mb_cache_entry_free()
*
* This is equivalent to the sequence mb_cache_entry_takeout() --
* mb_cache_entry_release().
*/
void
mb_cache_entry_free(struct mb_cache_entry *ce)
{
spin_lock(&mb_cache_spinlock);
mb_assert(list_empty(&ce->e_lru_list));
__mb_cache_entry_unhash(ce);
__mb_cache_entry_release_unlock(ce);
}
/*
* mb_cache_entry_get()
*
* Get a cache entry by device / block number. (There can only be one entry
* in the cache per device and block.) Returns NULL if no such cache entry
* exists. The returned cache entry is locked for exclusive access ("single
* writer").
*/
struct mb_cache_entry *
mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev,
sector_t block)
{
unsigned int bucket;
struct list_head *l;
struct mb_cache_entry *ce;
bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
cache->c_bucket_bits);
spin_lock(&mb_cache_spinlock);
list_for_each(l, &cache->c_block_hash[bucket]) {
ce = list_entry(l, struct mb_cache_entry, e_block_list);
if (ce->e_bdev == bdev && ce->e_block == block) {
DEFINE_WAIT(wait);
if (!list_empty(&ce->e_lru_list))
list_del_init(&ce->e_lru_list);
while (ce->e_used > 0) {
ce->e_queued++;
prepare_to_wait(&mb_cache_queue, &wait,
TASK_UNINTERRUPTIBLE);
spin_unlock(&mb_cache_spinlock);
schedule();
spin_lock(&mb_cache_spinlock);
ce->e_queued--;
}
finish_wait(&mb_cache_queue, &wait);
ce->e_used += 1 + MB_CACHE_WRITER;
if (!__mb_cache_entry_is_hashed(ce)) {
__mb_cache_entry_release_unlock(ce);
return NULL;
}
goto cleanup;
}
}
ce = NULL;
cleanup:
spin_unlock(&mb_cache_spinlock);
return ce;
}
#if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
static struct mb_cache_entry *
__mb_cache_entry_find(struct list_head *l, struct list_head *head,
int index, struct block_device *bdev, unsigned int key)
{
while (l != head) {
struct mb_cache_entry *ce =
list_entry(l, struct mb_cache_entry,
e_indexes[index].o_list);
if (ce->e_bdev == bdev && ce->e_indexes[index].o_key == key) {
DEFINE_WAIT(wait);
if (!list_empty(&ce->e_lru_list))
list_del_init(&ce->e_lru_list);
/* Incrementing before holding the lock gives readers
priority over writers. */
ce->e_used++;
while (ce->e_used >= MB_CACHE_WRITER) {
ce->e_queued++;
prepare_to_wait(&mb_cache_queue, &wait,
TASK_UNINTERRUPTIBLE);
spin_unlock(&mb_cache_spinlock);
schedule();
spin_lock(&mb_cache_spinlock);
ce->e_queued--;
}
finish_wait(&mb_cache_queue, &wait);
if (!__mb_cache_entry_is_hashed(ce)) {
__mb_cache_entry_release_unlock(ce);
spin_lock(&mb_cache_spinlock);
return ERR_PTR(-EAGAIN);
}
return ce;
}
l = l->next;
}
return NULL;
}
/*
* mb_cache_entry_find_first()
*
* Find the first cache entry on a given device with a certain key in
* an additional index. Additonal matches can be found with
* mb_cache_entry_find_next(). Returns NULL if no match was found. The
* returned cache entry is locked for shared access ("multiple readers").
*
* @cache: the cache to search
* @index: the number of the additonal index to search (0<=index<indexes_count)
* @bdev: the device the cache entry should belong to
* @key: the key in the index
*/
struct mb_cache_entry *
mb_cache_entry_find_first(struct mb_cache *cache, int index,
struct block_device *bdev, unsigned int key)
{
unsigned int bucket = hash_long(key, cache->c_bucket_bits);
struct list_head *l;
struct mb_cache_entry *ce;
mb_assert(index < mb_cache_indexes(cache));
spin_lock(&mb_cache_spinlock);
l = cache->c_indexes_hash[index][bucket].next;
ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket],
index, bdev, key);
spin_unlock(&mb_cache_spinlock);
return ce;
}
/*
* mb_cache_entry_find_next()
*
* Find the next cache entry on a given device with a certain key in an
* additional index. Returns NULL if no match could be found. The previous
* entry is atomatically released, so that mb_cache_entry_find_next() can
* be called like this:
*
* entry = mb_cache_entry_find_first();
* while (entry) {
* ...
* entry = mb_cache_entry_find_next(entry, ...);
* }
*
* @prev: The previous match
* @index: the number of the additonal index to search (0<=index<indexes_count)
* @bdev: the device the cache entry should belong to
* @key: the key in the index
*/
struct mb_cache_entry *
mb_cache_entry_find_next(struct mb_cache_entry *prev, int index,
struct block_device *bdev, unsigned int key)
{
struct mb_cache *cache = prev->e_cache;
unsigned int bucket = hash_long(key, cache->c_bucket_bits);
struct list_head *l;
struct mb_cache_entry *ce;
mb_assert(index < mb_cache_indexes(cache));
spin_lock(&mb_cache_spinlock);
l = prev->e_indexes[index].o_list.next;
ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket],
index, bdev, key);
__mb_cache_entry_release_unlock(prev);
return ce;
}
#endif /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */
static int __init init_mbcache(void)
{
mb_shrinker = set_shrinker(DEFAULT_SEEKS, mb_cache_shrink_fn);
return 0;
}
static void __exit exit_mbcache(void)
{
remove_shrinker(mb_shrinker);
}
module_init(init_mbcache)
module_exit(exit_mbcache)