library(ISLR)
summary(Default)
## default student balance income
## No :9667 No :7056 Min. : 0 Min. : 772
## Yes: 333 Yes:2944 1st Qu.: 482 1st Qu.:21340
## Median : 824 Median :34553
## Mean : 835 Mean :33517
## 3rd Qu.:1166 3rd Qu.:43808
## Max. :2654 Max. :73554
attach(Default)
set.seed(1)
glm.fit = glm(default ~ income + balance, data = Default, family = binomial)
summary(glm.fit)
##
## Call:
## glm(formula = default ~ income + balance, family = binomial,
## data = Default)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.473 -0.144 -0.057 -0.021 3.724
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.15e+01 4.35e-01 -26.54 <2e-16 ***
## income 2.08e-05 4.99e-06 4.17 3e-05 ***
## balance 5.65e-03 2.27e-04 24.84 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2920.6 on 9999 degrees of freedom
## Residual deviance: 1579.0 on 9997 degrees of freedom
## AIC: 1585
##
## Number of Fisher Scoring iterations: 8
boot.fn = function(data, index) return(coef(glm(default ~ income + balance,
data = data, family = binomial, subset = index)))
library(boot)
boot(Default, boot.fn, 50)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = Default, statistic = boot.fn, R = 50)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* -1.154e+01 1.181e-01 4.202e-01
## t2* 2.081e-05 -5.467e-08 4.542e-06
## t3* 5.647e-03 -6.975e-05 2.283e-04
Similar answers to the second and third significant digits.