Skip to content

mod-audio/RTNeural

Repository files navigation

RTNeural

Tests Bench Examples codecov arXiv License

A lightweight neural network inferencing engine written in C++. This library was designed with the intention of being used in real-time systems, specifically real-time audio processing.

Currently supported layers:

  • dense
  • GRU
  • LSTM
  • Conv1D
  • MaxPooling
  • BatchNorm

Currently supported activations:

  • tanh
  • ReLU
  • Sigmoid
  • SoftMax

For a complete reference of the available functionality, see the API docs. For more information on the design and purpose of the library, see the reference paper.

How To Use

RTNeural is capable of taking a neural network that has already been trained, loading the weights from that network, and running inference. Some simple examples are available in the examples/ directory.

Exporting weights from a trained network

Neural networks are typically trained using Python libraries including Tensorflow or PyTorch. Once you have trained a neural network using one of these frameworks, you must "export" the network weights to a json file, so that RTNeural can read them. An implementation of the export process for a Tensorflow model is provided in python/model_utils.py, and can be used as follows.

# import dependencies
import tensorflow as tf
from tensorflow import keras
from model_utils import save_model

# create Tensrflow model
model = keras.Sequential()
...

# train model
model.train()

# export model weights
save_model(model, 'model_weights.json')

Creating a model

Next, you can create an inferencing engine in C++ directly from the exported json file:

#include <RTNeural.h>
...
std::ifstream jsonStream("model_weights.json", std::ifstream::binary);
auto model = RTNeural::json_parser::parseJson<double>(jsonStream);

Running inference

Before running inference, it is recommended to "reset" the state of your model (if the model has state).

model->reset();

Then, you may run inference as follows:

double input[] = { 1.0, 0.5, -0.1 }; // set up input vector
double output = model->forward(input); // compute output

Compile-Time API

The code shown above will create the inferencing engine dynamically at run-time. If the model architecture is fixed at compile-time, it may be preferable to use RTNeural's API for defining an inferencing engine type at compile-time, which can significantly improve performance.

// define model type
RTNeural::ModelT<double, 8, 1
    RTNeural::DenseT<double, 8, 8>,
    RTNeural::TanhActivationT<double, 8>,
    RTNeural::DenseT<double, 8, 1>
> modelT;

// load model weights from json
std::ifstream jsonStream("model_weights.json", std::ifstream::binary);
auto model = RTNeural::json_parser::parseJson<double>(jsonStream);
modelT.parseJson(jsonStream);

modelT.reset(); // reset state

double input[] = { 1.0, 0.5, -0.1 }; // set up input vector
double output = modelT.forward(input); // compute output

Building with CMake

RTNeural is built with CMake, and the easiest way to link is to include RTNeural as a submodule:

...
add_subdirectory(RTNeural)
include_directories(RTNeural)
...
target_link_libraries(MyCMakeProject LINK_PUBLIC RTNeural)

If you are trying to use RTNeural in a project that does not use CMake, please see the instructions below.

Choosing a Backend

RTNeural supports three backends, Eigen, xsimd, or the C++ STL. You can choose your backend by passing either -DRTNEURAL_EIGEN=ON, -DRTNEURAL_XSIMD=ON, or -DRTNEURAL_STL=ON to your CMake configuration. By default, the Eigen backend will be used. Alternatively, you may select your choice of backends in your CMake configuration as follows:

set(RTNEURAL_XSIMD ON CACHE BOOL "Use RTNeural with this backend" FORCE)
add_subdirectory(modules/RTNeural)

In general, the Eigen backend typically has the best performance for larger networks, while smaller networks may perform better with XSIMD. However, it is recommended to measure the performance of your network with all the backends that available on your target platform to ensure optimal performance. For more information see the benchmark results.

RTNeural also has experimental support for Apple's Accelerate framework (-DRTNEURAL_ACCELERATE=ON). Please note that the Accelerate backend can only be used when compiling for Apple devices, and does not currently support defining compile-time inferencing engines.

Note that you must abide by the licensing rules of whichever backend library you choose.

Other configuration flags

If you would like to build RTNeural with the AVX2 SIMD extensions, you may run CMake with the -DRTNEURAL_USE_AVX2=ON. Note that this flag will have no effect when compiling for platforms that do not support AVX2 instructions.

Building the Unit Tests

To build the RTNeural's unit tests, run cmake -Bbuild -DBUILD_TESTS=ON, followed by cmake --build build. To run the full testing suite, run ./build/rtneural_tests all. For more information, run ./build/rtneural_tests --help.

Building the Performance Benchmarks

To build the performance benchmarks, run cmake -Bbuild -DBUILD_BENCH=ON, followed by cmake --build build --config Release. To run the layer benchmarks, run ./build/rtneural_layer_bench <layer> <length> <in_size> <out_size>. To run the model benchmark, run ./build/rtneural_model_bench.

Building the Examples

To build the RTNeural examples run:

cmake -Bbuild -DBUILD_EXAMPLES=ON
cmake --build build --config Release

The example programs will then be located in build/examples_out/, and may be run from there.

An example of using RTNeural within a real-time audio plugin can be found on GitHub here.

Building without CMake

If you wish to use RTNeural in a project that doesn't use CMake, RTNeural can be included as a header-only library, along with a few extra steps.

  1. Add a compile-time definition to define a default byte alignment for RTNeural. For most cases this definition will be one of either:

    • RTNEURAL_DEFAULT_ALIGNMENT=16
    • RTNEURAL_DEFAULT_ALIGNMENT=32
  2. Add a compile-time definition to select a backend. If you wish to use the STL backend, then no definition is required. This definition should be one of the following:

    • RTNEURAL_USE_EIGEN=1
    • RTNEURAL_USE_XSIMD=1
  3. Add the necessary include paths for your chosen backend. This path will be one of either:

    • <repo>/modules/Eigen
    • <repo>/modules/xsimd/include/xsimd

It may also be worth checking out the example Makefile.

Contributing

Contributions to this project are most welcome! Currently, there is considerable need for the following improvements:

  • Better implementation of convolutional layers:
    • Implement more options (grouping, stride, etc...)
    • Implement Conv2D
  • Support for exporting/loading PyTorch models
  • More robust support for exporting/loading Tensorflow models
  • Support for more activation layers
  • Better test coverage
  • Any changes that improve overall performance

General code maintenance and documentation is always appreciated as well! Note that if you are implementing a new layer type, it is not required to provide support for all the backends, though it is recommended to at least provide a "fallback" implementation using the STL backend.

Powered by RTNeural

RTNeural is currently being used by several audio plugins:

  • Chow Centaur: A guitar pedal emulation plugin, using a real-time recurrent neural network.
  • Chow Tape Model: An analog tape emulation, using a real-time dense neural network.
  • GuitarML: GuitarML plugins use machine learning to model guitar amplifiers and effects.

Citation

If you are using RTNeural as part of an academic work, please cite the library as follows:

@article{chowdhury2021rtneural,
        title={RTNeural: Fast Neural Inferencing for Real-Time Systems}, 
        author={Jatin Chowdhury},
        year={2021},
        journal={arXiv preprint arXiv:2106.03037}
}

License

RTNeural is open source, and is licensed under the BSD 3-clause license.

Enjoy!

About

Real-time neural network inferencing

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 98.6%
  • Other 1.4%