-
Notifications
You must be signed in to change notification settings - Fork 946
/
Copy pathkws_utils.py
284 lines (237 loc) · 10.2 KB
/
kws_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import re
import logging
import torch
import math
from collections import defaultdict
from typing import List, Optional, Tuple
symbol_str = '[’!"#$%&\'()*+,-./:;<>=?@,。?★、…【】《》?“”‘’![\\]^_`{|}~\s]+'
def split_mixed_label(input_str):
tokens = []
s = input_str.lower()
while len(s) > 0:
match = re.match(r'[A-Za-z!?,<>()\']+', s)
if match is not None:
word = match.group(0)
else:
word = s[0:1]
tokens.append(word)
s = s.replace(word, '', 1).strip(' ')
return tokens
def query_token_set(txt, symbol_table, lexicon_table):
tokens_str = tuple()
tokens_idx = tuple()
if txt in symbol_table:
tokens_str = tokens_str + (txt, )
tokens_idx = tokens_idx + (symbol_table[txt], )
return tokens_str, tokens_idx
parts = split_mixed_label(txt)
for part in parts:
if part == '!sil' or part == '(sil)' or part == '<sil>':
tokens_str = tokens_str + ('!sil', )
elif part == '<blank>' or part == '<blank>':
tokens_str = tokens_str + ('<blank>', )
elif part == '(noise)' or part == 'noise)' or part == '(noise' or part == '<noise>':
tokens_str = tokens_str + ('<unk>', )
elif part in symbol_table:
tokens_str = tokens_str + (part, )
elif part in lexicon_table:
for ch in lexicon_table[part]:
tokens_str = tokens_str + (ch, )
else:
part = re.sub(symbol_str, '', part)
for ch in part:
tokens_str = tokens_str + (ch, )
for ch in tokens_str:
if ch in symbol_table:
tokens_idx = tokens_idx + (symbol_table[ch], )
elif ch == '!sil':
if 'sil' in symbol_table:
tokens_idx = tokens_idx + (symbol_table['sil'], )
else:
tokens_idx = tokens_idx + (symbol_table['<blank>'], )
elif ch == '<unk>':
if '<unk>' in symbol_table:
tokens_idx = tokens_idx + (symbol_table['<unk>'], )
else:
tokens_idx = tokens_idx + (symbol_table['<blank>'], )
else:
if '<unk>' in symbol_table:
tokens_idx = tokens_idx + (symbol_table['<unk>'], )
logging.info(f'\'{ch}\' is not in token set, replace with <unk>')
else:
tokens_idx = tokens_idx + (symbol_table['<blank>'], )
logging.info(f'\'{ch}\' is not in token set, replace with <blank>')
return tokens_str, tokens_idx
class KwsCtcPrefixDecoder():
"""Decoder interface wrapper for CTCPrefixDecode."""
def __init__(
self,
ctc: torch.nn.Module,
keywords: str,
token_list: list,
seg_dict: dict,
):
"""Initialize class.
Args:
ctc (torch.nn.Module): The CTC implementation.
For example, :class:`espnet.nets.pytorch_backend.ctc.CTC`
"""
self.ctc = ctc
self.token_list = token_list
token_table = {}
for token in token_list:
token_table[token] = token_list.index(token)
self.keywords_idxset = {0}
self.keywords_token = {}
self.keywords_str = keywords
keywords_list = self.keywords_str.strip().replace(' ', '').split(',')
for keyword in keywords_list:
strs, indexs = query_token_set(keyword, token_table, seg_dict)
self.keywords_token[keyword] = {}
self.keywords_token[keyword]['token_id'] = indexs
self.keywords_token[keyword]['token_str'] = ''.join('%s ' % str(i) for i in indexs)
[ self.keywords_idxset.add(i) for i in indexs ]
def beam_search(
self,
logits: torch.Tensor,
logits_lengths: torch.Tensor,
keywords_tokenset: set = None,
score_beam_size: int = 3,
path_beam_size: int = 20,
) -> Tuple[List[List[int]], torch.Tensor]:
""" CTC prefix beam search inner implementation
Args:
logits (torch.Tensor): (1, max_len, vocab_size)
logits_lengths (torch.Tensor): (1, )
keywords_tokenset (set): token set for filtering score
score_beam_size (int): beam size for score
path_beam_size (int): beam size for path
Returns:
List[List[int]]: nbest results
"""
maxlen = logits.size(0)
ctc_probs = logits
cur_hyps = [(tuple(), (1.0, 0.0, []))]
# CTC beam search step by step
for t in range(0, maxlen):
probs = ctc_probs[t] # (vocab_size,)
# key: prefix, value (pb, pnb), default value(-inf, -inf)
next_hyps = defaultdict(lambda: (0.0, 0.0, []))
# 2.1 First beam prune: select topk best
top_k_probs, top_k_index = probs.topk(
score_beam_size) # (score_beam_size,)
# filter prob score that is too small
filter_probs = []
filter_index = []
for prob, idx in zip(top_k_probs.tolist(), top_k_index.tolist()):
if keywords_tokenset is not None:
if prob > 0.05 and idx in keywords_tokenset:
filter_probs.append(prob)
filter_index.append(idx)
else:
if prob > 0.05:
filter_probs.append(prob)
filter_index.append(idx)
if len(filter_index) == 0:
continue
for s in filter_index:
ps = probs[s].item()
# print(f'frame:{t}, token:{s}, score:{ps}')
for prefix, (pb, pnb, cur_nodes) in cur_hyps:
last = prefix[-1] if len(prefix) > 0 else None
if s == 0: # blank
n_pb, n_pnb, nodes = next_hyps[prefix]
n_pb = n_pb + pb * ps + pnb * ps
nodes = cur_nodes.copy()
next_hyps[prefix] = (n_pb, n_pnb, nodes)
elif s == last:
if not math.isclose(pnb, 0.0, abs_tol=0.000001):
# Update *ss -> *s;
n_pb, n_pnb, nodes = next_hyps[prefix]
n_pnb = n_pnb + pnb * ps
nodes = cur_nodes.copy()
if ps > nodes[-1]['prob']: # update frame and prob
nodes[-1]['prob'] = ps
nodes[-1]['frame'] = t
next_hyps[prefix] = (n_pb, n_pnb, nodes)
if not math.isclose(pb, 0.0, abs_tol=0.000001):
# Update *s-s -> *ss, - is for blank
n_prefix = prefix + (s, )
n_pb, n_pnb, nodes = next_hyps[n_prefix]
n_pnb = n_pnb + pb * ps
nodes = cur_nodes.copy()
nodes.append(dict(token=s, frame=t,
prob=ps)) # to record token prob
next_hyps[n_prefix] = (n_pb, n_pnb, nodes)
else:
n_prefix = prefix + (s, )
n_pb, n_pnb, nodes = next_hyps[n_prefix]
if nodes:
if ps > nodes[-1]['prob']: # update frame and prob
nodes[-1]['prob'] = ps
nodes[-1]['frame'] = t
else:
nodes = cur_nodes.copy()
nodes.append(dict(token=s, frame=t,
prob=ps)) # to record token prob
n_pnb = n_pnb + pb * ps + pnb * ps
next_hyps[n_prefix] = (n_pb, n_pnb, nodes)
# 2.2 Second beam prune
next_hyps = sorted(next_hyps.items(),
key=lambda x: (x[1][0] + x[1][1]),
reverse=True)
cur_hyps = next_hyps[:path_beam_size]
hyps = [(y[0], y[1][0] + y[1][1], y[1][2]) for y in cur_hyps]
return hyps
def is_sublist(self, main_list, check_list):
if len(main_list) < len(check_list):
return -1
if len(main_list) == len(check_list):
return 0 if main_list == check_list else -1
for i in range(len(main_list) - len(check_list)):
if main_list[i] == check_list[0]:
for j in range(len(check_list)):
if main_list[i + j] != check_list[j]:
break
else:
return i
else:
return -1
def _decode_inside(
self,
logits: torch.Tensor,
logits_lengths: torch.Tensor,
):
hyps = self.beam_search(logits, logits_lengths, self.keywords_idxset)
hit_keyword = None
hit_score = 1.0
# start = 0; end = 0
for one_hyp in hyps:
prefix_ids = one_hyp[0]
# path_score = one_hyp[1]
prefix_nodes = one_hyp[2]
assert len(prefix_ids) == len(prefix_nodes)
for word in self.keywords_token.keys():
lab = self.keywords_token[word]['token_id']
offset = self.is_sublist(prefix_ids, lab)
if offset != -1:
hit_keyword = word
for idx in range(offset, offset + len(lab)):
hit_score *= prefix_nodes[idx]['prob']
break
if hit_keyword is not None:
hit_score = math.sqrt(hit_score)
break
if hit_keyword is not None:
return True, hit_keyword, hit_score
else:
return False, None, None
def decode(self, x: torch.Tensor):
"""Get an initial state for decoding.
Args:
x (torch.Tensor): The encoded feature tensor
Returns: decode result
"""
raw_logp = self.ctc.softmax(x.unsqueeze(0)).detach().squeeze(0).cpu()
xlen = torch.tensor([raw_logp.size(1)])
return self._decode_inside(raw_logp, xlen)