-
Notifications
You must be signed in to change notification settings - Fork 947
/
Copy pathspeaker_utils.py
197 lines (167 loc) · 6.27 KB
/
speaker_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# Copyright (c) Alibaba, Inc. and its affiliates.
""" Some implementations are adapted from https://github.com/yuyq96/D-TDNN
"""
import io
from typing import Union
import librosa as sf
import numpy as np
import torch
import torch.nn.functional as F
import torchaudio.compliance.kaldi as Kaldi
from torch import nn
from funasr.utils.modelscope_file import File
def check_audio_list(audio: list):
audio_dur = 0
for i in range(len(audio)):
seg = audio[i]
assert seg[1] >= seg[0], "modelscope error: Wrong time stamps."
assert isinstance(seg[2], np.ndarray), "modelscope error: Wrong data type."
assert (
int(seg[1] * 16000) - int(seg[0] * 16000) == seg[2].shape[0]
), "modelscope error: audio data in list is inconsistent with time length."
if i > 0:
assert seg[0] >= audio[i - 1][1], "modelscope error: Wrong time stamps."
audio_dur += seg[1] - seg[0]
return audio_dur
# assert audio_dur > 5, 'modelscope error: The effective audio duration is too short.'
def sv_preprocess(inputs: Union[np.ndarray, list]):
output = []
for i in range(len(inputs)):
if isinstance(inputs[i], str):
file_bytes = File.read(inputs[i])
data, fs = sf.load(io.BytesIO(file_bytes), dtype="float32")
if len(data.shape) == 2:
data = data[:, 0]
data = torch.from_numpy(data).unsqueeze(0)
data = data.squeeze(0)
elif isinstance(inputs[i], np.ndarray):
assert len(inputs[i].shape) == 1, "modelscope error: Input array should be [N, T]"
data = inputs[i]
if data.dtype in ["int16", "int32", "int64"]:
data = (data / (1 << 15)).astype("float32")
else:
data = data.astype("float32")
data = torch.from_numpy(data)
else:
raise ValueError(
"modelscope error: The input type is restricted to audio address and nump array."
)
output.append(data)
return output
def sv_chunk(vad_segments: list, fs=16000) -> list:
config = {
"seg_dur": 1.5,
"seg_shift": 0.75,
}
def seg_chunk(seg_data):
seg_st = seg_data[0]
data = seg_data[2]
chunk_len = int(config["seg_dur"] * fs)
chunk_shift = int(config["seg_shift"] * fs)
last_chunk_ed = 0
seg_res = []
for chunk_st in range(0, data.shape[0], chunk_shift):
chunk_ed = min(chunk_st + chunk_len, data.shape[0])
if chunk_ed <= last_chunk_ed:
break
last_chunk_ed = chunk_ed
chunk_st = max(0, chunk_ed - chunk_len)
chunk_data = data[chunk_st:chunk_ed]
if chunk_data.shape[0] < chunk_len:
chunk_data = np.pad(chunk_data, (0, chunk_len - chunk_data.shape[0]), "constant")
seg_res.append([chunk_st / fs + seg_st, chunk_ed / fs + seg_st, chunk_data])
return seg_res
segs = []
for i, s in enumerate(vad_segments):
segs.extend(seg_chunk(s))
return segs
def extract_feature(audio):
features = []
for au in audio:
feature = Kaldi.fbank(au.unsqueeze(0), num_mel_bins=80)
feature = feature - feature.mean(dim=0, keepdim=True)
features.append(feature.unsqueeze(0))
features = torch.cat(features)
return features
def postprocess(
segments: list, vad_segments: list, labels: np.ndarray, embeddings: np.ndarray
) -> list:
assert len(segments) == len(labels)
labels = correct_labels(labels)
distribute_res = []
for i in range(len(segments)):
distribute_res.append([segments[i][0], segments[i][1], labels[i]])
# merge the same speakers chronologically
distribute_res = merge_seque(distribute_res)
# accquire speaker center
spk_embs = []
for i in range(labels.max() + 1):
spk_emb = embeddings[labels == i].mean(0)
spk_embs.append(spk_emb)
spk_embs = np.stack(spk_embs)
def is_overlapped(t1, t2):
if t1 > t2 + 1e-4:
return True
return False
# distribute the overlap region
for i in range(1, len(distribute_res)):
if is_overlapped(distribute_res[i - 1][1], distribute_res[i][0]):
p = (distribute_res[i][0] + distribute_res[i - 1][1]) / 2
distribute_res[i][0] = p
distribute_res[i - 1][1] = p
# smooth the result
distribute_res = smooth(distribute_res)
return distribute_res
def correct_labels(labels):
labels_id = 0
id2id = {}
new_labels = []
for i in labels:
if i not in id2id:
id2id[i] = labels_id
labels_id += 1
new_labels.append(id2id[i])
return np.array(new_labels)
def merge_seque(distribute_res):
res = [distribute_res[0]]
for i in range(1, len(distribute_res)):
if distribute_res[i][2] != res[-1][2] or distribute_res[i][0] > res[-1][1]:
res.append(distribute_res[i])
else:
res[-1][1] = distribute_res[i][1]
return res
def smooth(res, mindur=1):
# short segments are assigned to nearest speakers.
for i in range(len(res)):
res[i][0] = round(res[i][0], 2)
res[i][1] = round(res[i][1], 2)
if res[i][1] - res[i][0] < mindur:
if i == 0:
res[i][2] = res[i + 1][2]
elif i == len(res) - 1:
res[i][2] = res[i - 1][2]
elif res[i][0] - res[i - 1][1] <= res[i + 1][0] - res[i][1]:
res[i][2] = res[i - 1][2]
else:
res[i][2] = res[i + 1][2]
# merge the speakers
res = merge_seque(res)
return res
def distribute_spk(sentence_list, sd_time_list):
sd_sentence_list = []
for d in sentence_list:
sentence_start = d["ts_list"][0][0]
sentence_end = d["ts_list"][-1][1]
sentence_spk = 0
max_overlap = 0
for sd_time in sd_time_list:
spk_st, spk_ed, spk = sd_time
spk_st = spk_st * 1000
spk_ed = spk_ed * 1000
overlap = max(min(sentence_end, spk_ed) - max(sentence_start, spk_st), 0)
if overlap > max_overlap:
max_overlap = overlap
sentence_spk = spk
d["spk"] = sentence_spk
sd_sentence_list.append(d)
return sd_sentence_list