-
Notifications
You must be signed in to change notification settings - Fork 945
/
Copy pathtimestamp_tools.py
278 lines (265 loc) · 10.4 KB
/
timestamp_tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import torch
import codecs
import logging
import argparse
import numpy as np
# import edit_distance
from itertools import zip_longest
def cif_wo_hidden(alphas, threshold):
batch_size, len_time = alphas.size()
# loop varss
integrate = torch.zeros([batch_size], device=alphas.device)
# intermediate vars along time
list_fires = []
for t in range(len_time):
alpha = alphas[:, t]
integrate += alpha
list_fires.append(integrate)
fire_place = integrate >= threshold
integrate = torch.where(
fire_place,
integrate - torch.ones([batch_size], device=alphas.device) * threshold,
integrate,
)
fires = torch.stack(list_fires, 1)
return fires
def ts_prediction_lfr6_standard(
us_alphas, us_peaks, char_list, vad_offset=0.0, force_time_shift=-1.5, sil_in_str=True, upsample_rate=3,
):
if not len(char_list):
return "", []
START_END_THRESHOLD = 5
MAX_TOKEN_DURATION = 12 # 3 times upsampled
TIME_RATE=10.0 * 6 / 1000 / upsample_rate
if len(us_alphas.shape) == 2:
alphas, peaks = us_alphas[0], us_peaks[0] # support inference batch_size=1 only
else:
alphas, peaks = us_alphas, us_peaks
if char_list[-1] == "</s>":
char_list = char_list[:-1]
fire_place = (
torch.where(peaks >= 1.0 - 1e-4)[0].cpu().numpy() + force_time_shift
) # total offset
if len(fire_place) != len(char_list) + 1:
alphas /= alphas.sum() / (len(char_list) + 1)
alphas = alphas.unsqueeze(0)
peaks = cif_wo_hidden(alphas, threshold=1.0 - 1e-4)[0]
fire_place = (
torch.where(peaks >= 1.0 - 1e-4)[0].cpu().numpy() + force_time_shift
) # total offset
num_frames = peaks.shape[0]
timestamp_list = []
new_char_list = []
# for bicif model trained with large data, cif2 actually fires when a character starts
# so treat the frames between two peaks as the duration of the former token
# fire_place = torch.where(peaks>=1.0-1e-4)[0].cpu().numpy() + force_time_shift # total offset
# assert num_peak == len(char_list) + 1 # number of peaks is supposed to be number of tokens + 1
# begin silence
if fire_place[0] > START_END_THRESHOLD:
# char_list.insert(0, '<sil>')
timestamp_list.append([0.0, fire_place[0] * TIME_RATE])
new_char_list.append("<sil>")
# tokens timestamp
for i in range(len(fire_place) - 1):
new_char_list.append(char_list[i])
if MAX_TOKEN_DURATION < 0 or fire_place[i + 1] - fire_place[i] <= MAX_TOKEN_DURATION:
timestamp_list.append([fire_place[i] * TIME_RATE, fire_place[i + 1] * TIME_RATE])
else:
# cut the duration to token and sil of the 0-weight frames last long
_split = fire_place[i] + MAX_TOKEN_DURATION
timestamp_list.append([fire_place[i] * TIME_RATE, _split * TIME_RATE])
timestamp_list.append([_split * TIME_RATE, fire_place[i + 1] * TIME_RATE])
new_char_list.append("<sil>")
# tail token and end silence
# new_char_list.append(char_list[-1])
if num_frames - fire_place[-1] > START_END_THRESHOLD:
_end = (num_frames + fire_place[-1]) * 0.5
# _end = fire_place[-1]
timestamp_list[-1][1] = _end * TIME_RATE
timestamp_list.append([_end * TIME_RATE, num_frames * TIME_RATE])
new_char_list.append("<sil>")
else:
if len(timestamp_list)>0:
timestamp_list[-1][1] = num_frames * TIME_RATE
if vad_offset: # add offset time in model with vad
for i in range(len(timestamp_list)):
timestamp_list[i][0] = timestamp_list[i][0] + vad_offset / 1000.0
timestamp_list[i][1] = timestamp_list[i][1] + vad_offset / 1000.0
res_txt = ""
for char, timestamp in zip(new_char_list, timestamp_list):
# if char != '<sil>':
if not sil_in_str and char == "<sil>":
continue
res_txt += "{} {} {};".format(
char, str(timestamp[0] + 0.0005)[:5], str(timestamp[1] + 0.0005)[:5]
)
res = []
for char, timestamp in zip(new_char_list, timestamp_list):
if char != "<sil>":
res.append([int(timestamp[0] * 1000), int(timestamp[1] * 1000)])
return res_txt, res
def timestamp_sentence(
punc_id_list, timestamp_postprocessed, text_postprocessed, return_raw_text=False
):
punc_list = [",", "。", "?", "、"]
res = []
if text_postprocessed is None:
return res
if timestamp_postprocessed is None:
return res
if len(timestamp_postprocessed) == 0:
return res
if len(text_postprocessed) == 0:
return res
if punc_id_list is None or len(punc_id_list) == 0:
res.append(
{
"text": text_postprocessed.split(),
"start": timestamp_postprocessed[0][0],
"end": timestamp_postprocessed[-1][1],
"timestamp": timestamp_postprocessed,
}
)
return res
if len(punc_id_list) != len(timestamp_postprocessed):
logging.warning("length mismatch between punc and timestamp")
sentence_text = ""
sentence_text_seg = ""
ts_list = []
sentence_start = timestamp_postprocessed[0][0]
sentence_end = timestamp_postprocessed[0][1]
texts = text_postprocessed.split()
punc_stamp_text_list = list(
zip_longest(punc_id_list, timestamp_postprocessed, texts, fillvalue=None)
)
for punc_stamp_text in punc_stamp_text_list:
punc_id, timestamp, text = punc_stamp_text
if sentence_start is None and timestamp is not None:
sentence_start = timestamp[0]
# sentence_text += text if text is not None else ''
if text is not None:
if "a" <= text[0] <= "z" or "A" <= text[0] <= "Z":
sentence_text += " " + text
elif len(sentence_text) and (
"a" <= sentence_text[-1] <= "z" or "A" <= sentence_text[-1] <= "Z"
):
sentence_text += " " + text
else:
sentence_text += text
sentence_text_seg += text + " "
ts_list.append(timestamp)
punc_id = int(punc_id) if punc_id is not None else 1
sentence_end = timestamp[1] if timestamp is not None else sentence_end
sentence_text_seg = (
sentence_text_seg[:-1] if sentence_text_seg and sentence_text_seg[-1] == " " else sentence_text_seg
)
if punc_id > 1:
sentence_text += punc_list[punc_id - 2]
if return_raw_text:
res.append(
{
"text": sentence_text,
"start": sentence_start,
"end": sentence_end,
"timestamp": ts_list,
"raw_text": sentence_text_seg,
}
)
else:
res.append(
{
"text": sentence_text,
"start": sentence_start,
"end": sentence_end,
"timestamp": ts_list,
}
)
sentence_text = ""
sentence_text_seg = ""
ts_list = []
sentence_start = None
return res
def timestamp_sentence_en(
punc_id_list, timestamp_postprocessed, text_postprocessed, return_raw_text=False
):
punc_list = [",", ".", "?", ","]
res = []
if text_postprocessed is None:
return res
if timestamp_postprocessed is None:
return res
if len(timestamp_postprocessed) == 0:
return res
if len(text_postprocessed) == 0:
return res
if punc_id_list is None or len(punc_id_list) == 0:
res.append(
{
"text": text_postprocessed.split(),
"start": timestamp_postprocessed[0][0],
"end": timestamp_postprocessed[-1][1],
"timestamp": timestamp_postprocessed,
}
)
return res
if len(punc_id_list) != len(timestamp_postprocessed):
logging.warning("length mismatch between punc and timestamp")
sentence_text = ""
sentence_text_seg = ""
ts_list = []
sentence_start = timestamp_postprocessed[0][0]
sentence_end = timestamp_postprocessed[0][1]
texts = text_postprocessed.split()
punc_stamp_text_list = list(
zip_longest(punc_id_list, timestamp_postprocessed, texts, fillvalue=None)
)
is_sentence_start = True
for punc_stamp_text in punc_stamp_text_list:
punc_id, timestamp, text = punc_stamp_text
# sentence_text += text if text is not None else ''
if text is not None:
if "a" <= text[0] <= "z" or "A" <= text[0] <= "Z":
sentence_text += " " + text
elif len(sentence_text) and (
"a" <= sentence_text[-1] <= "z" or "A" <= sentence_text[-1] <= "Z"
):
sentence_text += " " + text
else:
sentence_text += text
sentence_text_seg += text + " "
ts_list.append(timestamp)
punc_id = int(punc_id) if punc_id is not None else 1
sentence_end = timestamp[1] if timestamp is not None else sentence_end
sentence_text = sentence_text[1:] if sentence_text[0] == ' ' else sentence_text
if is_sentence_start:
sentence_start = timestamp[0] if timestamp is not None else sentence_start
is_sentence_start = False
if punc_id > 1:
is_sentence_start = True
sentence_text += punc_list[punc_id - 2]
sentence_text_seg = (
sentence_text_seg[:-1] if sentence_text_seg[-1] == " " else sentence_text_seg
)
if return_raw_text:
res.append(
{
"text": sentence_text,
"start": sentence_start,
"end": sentence_end,
"timestamp": ts_list,
"raw_text": sentence_text_seg,
}
)
else:
res.append(
{
"text": sentence_text,
"start": sentence_start,
"end": sentence_end,
"timestamp": ts_list,
}
)
sentence_text = ""
sentence_text_seg = ""
ts_list = []
return res