Skip to content

Latest commit

 

History

History
35 lines (27 loc) · 873 Bytes

README.md

File metadata and controls

35 lines (27 loc) · 873 Bytes

Quickstart

Here is a quick example tutorial on how to run the ML backend with a simple text classifier:

  1. Clone repo

    git clone https://github.com/heartexlabs/label-studio  
  2. Setup environment

    cd label-studio
    pip install -e .
    cd label_studio/ml/examples
    pip install -r requirements.txt
  3. Create new ML backend

    label-studio-ml init my_ml_backend --script label-studio/ml/examples/simple_text_classifier.py
  4. Start ML backend server

    label-studio-ml start my_ml_backend
  5. Run Label Studio connecting it to the running ML backend:

    label-studio start text_classification_project --init --template text_sentiment --ml-backends http://localhost:9090

Create your own ML backend

Check examples in label-studio/ml/examples directory.