forked from xiyuanyang45/DynamicPFL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathours_gep.py
executable file
·344 lines (291 loc) · 14.2 KB
/
ours_gep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import torch.optim as optim
from data_load.emg_utils import get_dataloaders
from data_load.data import *
from net import *
from utils import compute_noise_multiplier, compute_fisher_diag
from tqdm.auto import trange
import copy
import sys
import random
# >>> ***GEP
from gep_utils import (compute_subspace, embed_grad, flatten_tensor,
project_back_embedding, add_new_gradients_to_history)
import wandb
# <<< ***GEP
args = parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.device)
num_clients = args.num_clients
# >>> ***GEP
num_public_clients = args.num_public_clients
num_basis_elements = args.basis_size
gradient_history_size = args.history_size
# <<< ***GEP
local_epoch = args.local_epoch
global_epoch = args.global_epoch
batch_size = args.batch_size
target_epsilon = args.target_epsilon
target_delta = args.target_delta
clipping_bound = args.clipping_bound
dataset = args.dataset
user_sample_rate = args.user_sample_rate
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if args.store == True:
saved_stdout = sys.stdout
file = open(
f'./txt/{args.dirStr}/'
f'dataset {dataset} '
f'--num_clients {num_clients} '
f'--local_epoch {local_epoch} '
f'--global_epoch {global_epoch} '
f'--batch_size {batch_size} '
f'--target_epsilon {target_epsilon} '
f'--target_delta {target_delta} '
f'--clipping_bound {clipping_bound} '
f'--fisher_threshold {args.fisher_threshold} '
f'--lambda_1 {args.lambda_1} '
f'--lambda_2 {args.lambda_2} '
f'--lr {args.lr} '
f'--alpha {args.dir_alpha}'
f'.txt'
, 'a'
)
sys.stdout = file
def local_update(model, dataloader, global_model):
fisher_threshold = args.fisher_threshold
model = model.to(device)
global_model = global_model.to(device)
w_glob = [param.clone().detach() for param in global_model.parameters()]
fisher_diag = compute_fisher_diag(model, dataloader)
u_loc, v_loc = [], []
for param, fisher_value in zip(model.parameters(), fisher_diag):
u_param = (param * (fisher_value > fisher_threshold)).clone().detach()
v_param = (param * (fisher_value <= fisher_threshold)).clone().detach()
u_loc.append(u_param)
v_loc.append(v_param)
u_glob, v_glob = [], []
for global_param, fisher_value in zip(global_model.parameters(), fisher_diag):
u_param = (global_param * (fisher_value > fisher_threshold)).clone().detach()
v_param = (global_param * (fisher_value <= fisher_threshold)).clone().detach()
u_glob.append(u_param)
v_glob.append(v_param)
for u_param, v_param, model_param in zip(u_loc, v_glob, model.parameters()):
model_param.data = u_param + v_param
saved_u_loc = [u.clone() for u in u_loc]
def custom_loss(outputs, labels, param_diffs, reg_type):
ce_loss = F.cross_entropy(outputs, labels)
if reg_type == "R1":
reg_loss = (args.lambda_1 / 2) * torch.sum(torch.stack([torch.norm(diff) for diff in param_diffs]))
elif reg_type == "R2":
C = args.clipping_bound
norm_diff = torch.sum(torch.stack([torch.norm(diff) for diff in param_diffs]))
reg_loss = (args.lambda_2 / 2) * torch.norm(norm_diff - C)
else:
raise ValueError("Invalid regularization type")
return ce_loss + reg_loss
optimizer1 = optim.Adam(model.parameters(), lr=args.lr)
for epoch in range(args.local_epoch):
for data, labels in dataloader:
data, labels = data.to(device), labels.to(device)
optimizer1.zero_grad()
outputs = model(data)
param_diffs = [u_new - u_old for u_new, u_old in zip(model.parameters(), w_glob)]
loss = custom_loss(outputs, labels, param_diffs, "R1")
loss.backward()
with torch.no_grad():
for model_param, u_param in zip(model.parameters(), u_loc):
model_param.grad *= (u_param != 0)
optimizer1.step()
optimizer2 = optim.Adam(model.parameters(), lr=args.lr)
for epoch in range(args.local_epoch):
for data, labels in dataloader:
data, labels = data.to(device), labels.to(device)
optimizer2.zero_grad()
outputs = model(data)
param_diffs = [model_param - w_old for model_param, w_old in zip(model.parameters(), w_glob)]
loss = custom_loss(outputs, labels, param_diffs, "R2")
loss.backward()
with torch.no_grad():
for model_param, v_param in zip(model.parameters(), v_glob):
model_param.grad *= (v_param != 0)
optimizer2.step()
with torch.no_grad():
update = [(new_param - old_param).clone() for new_param, old_param in zip(model.parameters(), w_glob)]
model = model.to('cpu')
return update
def test(client_model, client_testloader):
client_model.eval()
client_model = client_model.to(device)
num_data = 0
correct = 0
with torch.no_grad():
for data, labels in client_testloader:
data, labels = data.to(device), labels.to(device)
outputs = client_model(data)
_, predicted = torch.max(outputs, 1)
correct += (predicted == labels).sum().item()
num_data += labels.size(0)
accuracy = 100.0 * correct / num_data
client_model = client_model.to('cpu')
return accuracy
def main():
best_acc = 0.0
mean_acc_s = []
acc_matrix = []
if dataset == 'MNIST':
train_dataset, test_dataset = get_mnist_datasets()
clients_train_set = get_clients_datasets(train_dataset, num_clients)
client_data_sizes = [len(client_dataset) for client_dataset in clients_train_set]
clients_train_loaders = [DataLoader(client_dataset, batch_size=batch_size) for client_dataset in
clients_train_set]
clients_test_loaders = [DataLoader(test_dataset) for i in range(num_clients)]
clients_models = [mnistNet() for _ in range(num_clients)]
global_model = mnistNet()
elif dataset == 'CIFAR10':
clients_train_loaders, clients_test_loaders, client_data_sizes = get_CIFAR10(args.dir_alpha, num_clients)
clients_models = [cifar10Net() for _ in range(num_clients)]
global_model = cifar10Net()
# elif dataset == 'FEMNIST':
# clients_train_loaders, clients_test_loaders, client_data_sizes = get_FEMNIST(num_clients)
#
# clients_models = [femnistNet() for _ in range(num_clients)]
# global_model = femnistNet()
elif dataset == 'SVHN':
clients_train_loaders, clients_test_loaders, client_data_sizes = get_SVHN(args.dir_alpha, num_clients)
clients_models = [SVHNNet() for _ in range(num_clients)]
global_model = SVHNNet()
elif dataset == 'putEMG':
clients_train_loaders, clients_test_loaders, client_data_sizes = get_dataloaders()
clients_models = [EMGModel(num_features=24 * 8, num_classes=8, use_softmax=True) for _ in range(num_clients)]
global_model = EMGModel(num_features=24 * 8, num_classes=8, use_softmax=True)
else:
print('undefined dataset')
assert 1 == 0
for client_model in clients_models:
client_model.load_state_dict(global_model.state_dict())
noise_multiplier = 0
if not args.no_noise:
noise_multiplier = compute_noise_multiplier(target_epsilon, target_delta, global_epoch, local_epoch, batch_size, client_data_sizes)
# noise_multiplier = 3.029
# print('noise multiplier', noise_multiplier)
# >>> ***GEP
public_clients_loaders = clients_train_loaders[:num_public_clients]
public_clients_models = clients_models[:num_public_clients]
history_gradient_per_layer = [None for _ in global_model.parameters()]
# <<< ***GEP
pbar = trange(global_epoch)
for epoch in pbar:
to_eval = ((epoch + 1) > args.eval_after and (epoch + 1) % args.eval_every == 0) or (epoch + 1) == global_epoch
# >>> ***GEP
# get public clients gradients for current global model state
public_clients_model_updates = []
for idx, (public_client_model, public_client_loader) in enumerate(
zip(public_clients_models, public_clients_loaders)):
public_client_model_backup = copy.deepcopy(public_client_model)
public_client_update = local_update(public_client_model, public_client_loader, global_model)
public_clients_model_updates.append(public_client_update)
clients_models[idx] = public_client_model_backup # do not update public models during pca update
# compute basis for subspace spanned by public gradients
pca_per_layer = []
for i, p in enumerate(global_model.parameters()):
layer_updates = [public_client_update[i] for public_client_update in public_clients_model_updates]
flattened_layer_update = flatten_tensor(layer_updates)
# update gradient history
basis_gradients = history_gradient_per_layer[i]
basis_gradients = add_new_gradients_to_history(flattened_layer_update, basis_gradients,
gradient_history_size)
history_gradient_per_layer[i] = basis_gradients
# compute new subspace basis
pca = compute_subspace(basis_gradients, num_basis_elements)
pca_per_layer.append(pca)
# <<< ***GEP
sampled_client_indices = random.sample(range(num_clients), max(1, int(user_sample_rate * num_clients)))
sampled_clients_models = [clients_models[i] for i in sampled_client_indices]
sampled_clients_train_loaders = [clients_train_loaders[i] for i in sampled_client_indices]
sampled_clients_test_loaders = [clients_test_loaders[i] for i in sampled_client_indices]
clients_model_updates = []
clients_accuracies = []
for idx, (client_model, client_trainloader, client_testloader) in enumerate(
zip(sampled_clients_models, sampled_clients_train_loaders, sampled_clients_test_loaders)):
pbar.set_description(f'Epoch {epoch} Client in Iter {idx + 1} Client ID {sampled_client_indices[idx]} noise multiplier {noise_multiplier}')
client_update = local_update(client_model, client_trainloader, global_model)
clients_model_updates.append(client_update)
if to_eval:
accuracy = test(client_model, client_testloader)
clients_accuracies.append(accuracy)
if to_eval:
print(clients_accuracies)
acc = sum(clients_accuracies) / len(clients_accuracies)
best_acc = max(acc, best_acc)
wandb.log({'Accuracy': acc, 'Best Accuracy': best_acc})
mean_acc_s.append(acc)
print(mean_acc_s)
acc_matrix.append(clients_accuracies)
sampled_client_data_sizes = [client_data_sizes[i] for i in sampled_client_indices]
sampled_client_weights = [
sampled_client_data_size / sum(sampled_client_data_sizes)
for sampled_client_data_size in sampled_client_data_sizes
]
# >>> ***GEP embed clients updates in subspace spanned by public clients
embedded_clients_model_updates = [[] for _ in range(len(sampled_client_indices))]
for i, p in enumerate(global_model.parameters()):
layer_updates = [client_update[i] for client_update in clients_model_updates]
flattened_layer_update = flatten_tensor(layer_updates)
embedded_update = embed_grad(flattened_layer_update, pca_per_layer[i])
for j, sampled_update in enumerate(embedded_clients_model_updates):
sampled_update.append(embedded_update[j])
clients_model_updates = embedded_clients_model_updates
# <<< ***GEP
clipped_updates = []
for idx, client_update in enumerate(clients_model_updates):
if not args.no_clip:
norm = torch.sqrt(sum([torch.sum(param ** 2) for param in client_update]))
clip_rate = max(1, (norm / clipping_bound))
clipped_update = [(param / clip_rate) for param in client_update]
else:
clipped_update = client_update
clipped_updates.append(clipped_update)
noisy_updates = []
for clipped_update in clipped_updates:
noise_stddev = torch.sqrt(torch.tensor((clipping_bound ** 2) * (noise_multiplier ** 2) / num_clients))
noise = [torch.randn_like(param) * noise_stddev for param in clipped_update]
noisy_update = [clipped_param + noise_param for clipped_param, noise_param in zip(clipped_update, noise)]
noisy_updates.append(noisy_update)
# >>>> ***GEP project back the noisy embeddings
noisy_updates = [[project_back_embedding(layer_update, pca, device).reshape(param.shape)
for (layer_update, pca, param) in
zip(client_update, pca_per_layer, global_model.parameters())]
for client_update in noisy_updates]
# <<<< ***GEP
aggregated_update = [
torch.sum(
torch.stack(
[
noisy_update[param_index] * sampled_client_weights[idx]
for idx, noisy_update in enumerate(noisy_updates)
]
),
dim=0,
)
for param_index in range(len(noisy_updates[0]))
]
with torch.no_grad():
for global_param, update in zip(global_model.parameters(), aggregated_update):
global_param.add_(update)
char_set = '1234567890abcdefghijklmnopqrstuvwxyz'
ID = ''
for ch in random.sample(char_set, 5):
ID = f'{ID}{ch}'
print(
f'===============================================================\n'
f'task_ID : '
f'{ID}\n'
f'main_yxy\n'
f'noise_multiplier : {noise_multiplier}\n'
f'mean accuracy : \n'
f'{mean_acc_s}\n'
f'acc matrix : \n'
f'{torch.tensor(acc_matrix)}\n'
f'===============================================================\n'
)
if __name__ == '__main__':
main()