-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.R
795 lines (650 loc) · 31.7 KB
/
server.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
server <- shinyServer(function(input, output, session) {
shinyalert(title = 'Welcome to the Climpart App!',
text = HTML('
<b>Refer to this learning module to get started:</b><br><br>
<iframe width="350px" height="225px" src="https://www.youtube.com/embed/9K5Vg70o1rc" frameborder="10" allow="autoplay; encrypted-media" allowfullscreen></iframe><br><br>
For a detailed explanation of the underlying analyses, see
<a href="https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/eap.1505">Doherty et al. (2017)</a><br><br>
If you want to process a very large extent, it is best to run the app offline.<br>
<a href="https://rawgit.com/mosscoder/seedselector/master/offlineInstructions.html">
Click here for more information!</a>'
),
type = '',
closeOnClickOutside = TRUE,
html = T)
observeEvent(input$moreInfo, {
showModal(modalDialog(HTML('This tool is intended for use
by USGS personnel, academia, the native seed industry, and the
public. The analyses presented here are
based upon the methods described in
<a href="https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/eap.1505">Doherty et al. (2017)</a>.
Please send questions,
comments, suggestions for improvements, and error reports via
email to USGS - Southwest Biological Science Center c/o Kyle
Doherty (<a href="mailto:[email protected]">[email protected]</a>).
The current web location for this tool is temporary and it will be
hosted on a USGS server as soon as a suitable one can be located.<br><br>
Written by Kyle Doherty, U.S. Geological
Survey, Southwest Biological Science Center, Flagstaff, Arizona. Written in the programming
language R (R Core Team (2015). R: A language and environment for
statistical computing. R Foundation for Statistical Computing,
Vienna, Austria. URL http://www.R-project.org/).<br><br>
Disclaimer: Although this program has been used by the USGS, no
warranty, expressed or implied, is made by the USGS or the United
States Government as to the accuracy and functioning of the
program and related program material nor shall the fact of
distribution constitute any such warranty, and no responsibility is
assumed by the USGS in connection therewith.
'
),
easyClose = TRUE,
footer = HTML("<button type='button' class='btn btn-success' data-dismiss='modal'>OK</button>")
))
})
output$instruct <- renderText('The purpose of this app is to aid sampling efforts along climate gradients for a
geographic region of interest. Examples of potential uses of this tool include:
sampling plant materials for common garden studies, establishing common garden
arrays, establishing vegetation transects, or banking seed for native plant
conservation. Analyses are conducted on the Bioclim
(http://www.worldclim.org/bioclim) dataset for the extent of North America (-168 to -52 degrees longitude and
7 to 83 degrees latitude). We chose to incorporate seven of these
variables that together capture unique axes of multivariate climate space, including:
mean annual temperature, diurnal range, temperature seasonality, temperature of
wettest quarter, mean annual precipitation, precipitation seasonality, and
precipitation of warmest quarter.
To operate the app, the user may input a lat/long bounding box with the supplied
slider bars or a spatial polygon. They then specify the number of partitions (as many as 50), click the
"Generate Partitions" button, and the app then uses cluster analysis to group the user-
defined climate space into the desired number of partitions. Within each partition
the app identifies the map cell that corresponds to the multivariate median, or
medoid, which we refer to as a climate center. After calculating these points, the app
then assigns each map cell to the climate center closest in climate space and maps
these assignments as regions of differing colors. Also reported are the
corresponding coordinates and Bioclim data for each of the climate centers, as well
as the distributions of their assignments.
The user can then download and explore the underlying rasters, climate center data,
and within-assignment distributions for offline use. To reproduce the aesthetics of the
mapping feature, set high values of the simval.tif as black and low values as white,
then overlay the center.assignment.tif, setting it to ~50% transparency, with values
as categorical, each value a contrasting color.')
output$inc<-renderUI({includeHTML("https://rawgit.com/mosscoder/climpart/master/offlineInstructions.html")})
output$leaf <- renderLeaflet({
leaflet() %>%
setView(lat = 50, lng = -100, zoom = 3) %>%
addProviderTiles("Esri.WorldTopoMap", group = "Terrain") %>%
addProviderTiles("CartoDB.Positron", group = "Light Basemap")
})
observe({
if(input$boundSelect == "slider"){
leafletProxy('leaf') %>%
clearShapes() %>%
addRectangles(lng1 = input$lon.range[1],
lng2 = input$lon.range[2],
lat1 = input$lat.range[1],
lat2 = input$lat.range[2],
color = '#317873',
weight = 2,
options = pathOptions(pane = "tilePane", zIndex = 1000))
} else if
(!is.null(input$boundFile2) & input$boundSelect == "poly"){
progress <- shiny::Progress$new()
on.exit(progress$close())
progress$set(message = "Processing user polygon", value = 0.5)
garbageList <- dir(path = temp.folder)
file.remove(paste0(temp.folder,'/',garbageList))
inFile <- input$boundFile2
unzip(zipfile = inFile$datapath, exdir = temp.folder) #specify user poly here
shp.file.dir <- list.files(path = temp.folder, pattern = "\\.shp$")
shx.file.dir <- list.files(path = temp.folder, pattern = "\\.shx$")
prj.file.dir <- list.files(path = temp.folder, pattern = "\\.prj$")
dbf.file.dir <- list.files(path = temp.folder, pattern = "\\.dbf$")
if(length(shp.file.dir) != 0 &
length(shx.file.dir) != 0 &
length(prj.file.dir) != 0 &
length(dbf.file.dir) != 0){
shp.layer <- strsplit(shp.file.dir, ".shp")
poly <- readOGR(dsn = path.expand(paste0(temp.folder,"/",shp.file.dir)), layer=shp.layer[[1]])
file.remove(paste0(temp.folder,"/",shp.file.dir))
poly.trans <- gBuffer(spTransform(gUnionCascaded(poly), CRS("+init=epsg:3857")), width = 1)
poly4map <- spTransform(gUnionCascaded(poly), CRS("+init=epsg:4326"))
polyDF <- SpatialPolygonsDataFrame(poly.trans, data.frame(f=0), match.ID = F)
writeOGR(polyDF, temp.folder, "userPoly", driver="ESRI Shapefile", overwrite_layer = T)
withProgress(message = "Rendering user polygon",
value = 0.75,
leafletProxy('leaf') %>%
clearShapes() %>%
addPolygons(data = poly4map,
weight = 2,
color = '#317873',
options = pathOptions(pane = "tilePane", zIndex = 1000)))
} else {
shinyalert(title = 'Problem with user polygon!',
text = 'Please ensure that your upload contains the required files:<br>
.shp<br>
.shx<br>
.prj<br>
.dbf<br>',
type = 'warning',
closeOnClickOutside = TRUE,
html = T)
file.remove(inFile$datapath)
NULL
}
}
})
climClip <- eventReactive(input$goButton,{
progress <- shiny::Progress$new()
on.exit(progress$close())
progress$set(message = "Extracting climate data for user extent", value = 0.1)
if(input$boundSelect == "slider"){
ext <- extent(input$lon.range[1],
input$lon.range[2],
input$lat.range[1],
input$lat.range[2])
extPoly <- as(ext, "SpatialPolygons")
sp::proj4string(extPoly) <- "+init=epsg:4326"
extMercator <- spTransform(extPoly, CRS("+init=epsg:3857"))
polyDF <- SpatialPolygonsDataFrame(extMercator, data.frame(f=0), match.ID = F)
writeOGR(polyDF, temp.folder, "userPoly", driver="ESRI Shapefile", overwrite_layer = T)
shpLoc <- path.expand(paste0(temp.folder,'/userPoly.shp'))
rasLoc <- path.expand('./climateMerc.tif')
gdalwarp(srcnodata=-9999,
dstnodata=-9999,
overwrite = T,
crop_to_cutline=T,
cutline = shpLoc,
rasLoc,
'clipped.tif')
file.remove(paste0(temp.folder,'/userPoly.shp'))
stack('clipped.tif')
} else if
(input$boundSelect == "poly" &
file.exists(paste0(temp.folder,'/userPoly.shp'))){
shpLoc <- path.expand(paste0(temp.folder,'/userPoly.shp'))
rasLoc <- path.expand('./climateMerc.tif')
getwd()
gdalwarp(srcnodata=-9999,
dstnodata=-9999,
overwrite = T,
crop_to_cutline=T,
cutline = shpLoc,
rasLoc,
'clipped.tif')
stack('clipped.tif')
} else {
shinyalert(title = 'Invalid polygon!',
text = HTML('<b>Please upload a valid spatial polygon<b>'
),
type = 'warning',
closeOnClickOutside = TRUE,
html = T)
NULL
}
})
unscaled <- eventReactive(input$goButton,{
progress <- shiny::Progress$new()
on.exit(progress$close())
progress$set(message = "Formatting selection", value = 0.15)
req(climClip())
clip <- climClip()
clipMat <- as.matrix(clip)
cell <- 1:ncell(clip)
xy <- xyFromCell(clip, cell)
roiDF <- na.omit(cbind(cell, xy[,1], xy[,2], clipMat))
colnames(roiDF) <- c("cell", "x", "y", "MAT","DiurnalRange","TSeasonality",
"TWettestQtr","MAP","PSeasonality","PWarmestQtr")
roiDF[,"MAT"] <- roiDF[,"MAT"]/10
roiDF[,"DiurnalRange"] <- roiDF[,"DiurnalRange"]/10
roiDF[,"TWettestQtr"] <- roiDF[,"TWettestQtr"]/10
if(nrow(roiDF) < input$cluster.num){
shinyalert(title = 'Invalid region of interest!',
text = HTML('Selection contains insufficient land area. Limit selection to land masses
within the bounds of -168 to -52 degrees longitude and 7 to 83 degrees latitude.'),
html = T,
type = 'error')
NULL
}else{
file.remove('clipped.tif')
roiDF
}
})
map.crop <- eventReactive(input$goButton,{
progress <- shiny::Progress$new()
on.exit(progress$close())
progress$set(message = "Scaling data", value = 0.25)
req(unscaled())
unsc <- unscaled()
climRaw <- unsc[,4:10]
cM <- colMeans2(climRaw)
cSd <- colSds(climRaw)
zscore <- function(x){
(climRaw[,x] - cM[x])/cSd[x]
}
unsc[,4:10] <- do.call(cbind, lapply(FUN = zscore, X = 1:7))
unsc[,"MAT"] <- unsc[,"MAT"]*(input$wtMAT+1e-6)
unsc[,"DiurnalRange"] <- unsc[,"DiurnalRange"]*(input$wtDiurnal+1e-6)
unsc[,"TSeasonality"] <- unsc[,"TSeasonality"]*(input$wtTSeason+1e-6)
unsc[,"TWettestQtr"] <- unsc[,"TWettestQtr"]*(input$wtTWet+1e-6)
unsc[,"MAP"] <- unsc[,"MAP"]*(input$wtMAP+1e-6)
unsc[,"PSeasonality"] <- unsc[,"PSeasonality"]*(input$wtPSeason+1e-6)
unsc[,"PWarmestQtr"] <- unsc[,"PWarmestQtr"]*(input$wtPWarm+1e-6)
unsc
})
max.find <- eventReactive(input$goButton,{
progress <- shiny::Progress$new()
on.exit(progress$close())
progress$set(message = "Calculating maximum climate distance", value = 0.3)
cropped.stack <- map.crop()
set.seed(123)
while.maxxer <- function(){
dists <- sqrt((cropped.stack[,4] - mean(cropped.stack[,4]))^2 + (cropped.stack[,5] - mean(cropped.stack[,5]))^2 +
(cropped.stack[,6] - mean(cropped.stack[,6]))^2 + (cropped.stack[,7] - mean(cropped.stack[,7]))^2 +
(cropped.stack[,8] - mean(cropped.stack[,8]))^2 + (cropped.stack[,9] - mean(cropped.stack[,9]))^2 +
(cropped.stack[,10] - mean(cropped.stack[,10]))^2)
max.dists <- max(dists)
repeat{
w.max <- cropped.stack[which.max(dists),]
test.dists <- sqrt((cropped.stack[,4] - w.max[4])^2 + (cropped.stack[,5] - w.max[5])^2 +
(cropped.stack[,6] - w.max[6])^2 + (cropped.stack[,7] - w.max[7])^2 +
(cropped.stack[,8] - w.max[8])^2 + (cropped.stack[,9] - w.max[9])^2 +
(cropped.stack[,10] - w.max[10])^2)
new.max <- max(test.dists)
if(new.max > max.dists){
max.dists <- new.max
w.max <- cropped.stack[which.max(test.dists),]
} else{
break
}
}
return(max.dists)
}
extent.max <- while.maxxer()
extent.max
})
medoids <- eventReactive(input$goButton,{
seedNum <- 123
set.seed(seedNum)
progress <- shiny::Progress$new()
on.exit(progress$close())
progress$set(message = "Clustering user extent", value = 0.4)
cropped.stack <- map.crop()
extent.max <- max.find()
attempts <- 0
while(attempts <= 5 ){
gc()
if(attempts > 0) set.seed(seedNum + attempts)
kms <- kmeans(x = cropped.stack[,4:10],
centers= input$cluster.num,
iter.max = 1e9)
if(kms$ifault != 4) break
attempts <- attempts + 1
}
species.centers <-kms$centers
euc.dist <- function(full.df, med.df, med){
euc <- sqrt((full.df[,4] - med.df[med,1])^2 +
(full.df[,5] - med.df[med,2])^2 +
(full.df[,6] - med.df[med,3])^2 +
(full.df[,7] - med.df[med,4])^2 +
(full.df[,8] - med.df[med,5])^2 +
(full.df[,9] - med.df[med,6])^2 +
(full.df[,10] - med.df[med,7])^2)
min.euc <- which.min(euc)
out <- full.df[min.euc,]
return(out)
}
kmeans.medoids <- do.call(
rbind,
lapply(
FUN = euc.dist,
full.df = cropped.stack,
med.df = species.centers,
X = 1:input$cluster.num
)
) %>% as.data.frame()
medoidsLatOrd <- kmeans.medoids[order(kmeans.medoids$cell),]
medoidsLatOrd
})
medprint <- eventReactive(input$goButton,{
progress <- shiny::Progress$new()
on.exit(progress$close())
progress$set(message = "Identifying best climate centers", value = 0.5)
cropped.stack <- map.crop()
extent.max <- max.find()
best.medoids <- data.frame(medoids())
medoid.print <- data.frame(paste("Center", 1:nrow(best.medoids)),subset(unscaled(), unscaled()[,1] %in% best.medoids$cell))
colnames(medoid.print)[1] <- "Climate Center"
medoid.print$MAT <- medoid.print$MAT
medoid.print$DiurnalRange <- medoid.print$DiurnalRange
medoid.print$TWettestQtr <- medoid.print$TWettestQtr
medoid.sp <- SpatialPointsDataFrame(subset(medoid.print, select =c(x,y)), medoid.print)
proj4string(medoid.sp) <- '+init=epsg:3857'
medoid.trans <- spTransform(medoid.sp, '+init=epsg:4326')
medoid.xy <- coordinates(medoid.trans)
medoid.print$x <- medoid.xy[,1]
medoid.print$y <- medoid.xy[,2]
medoid.print
})
sim.calcs <- eventReactive(input$goButton,{
progress <- shiny::Progress$new()
on.exit(progress$close())
progress$set(message = "Mapping climate similarity", value = 0.6)
cropped.stack <- map.crop()
extent.max <- max.find()
best.medoids <- medoids()
medoid.print <- medprint()
maps.clust.fun <- function(clim.vals){
col.dat <- clim.vals
clim.dist.df <- function(col){ #Euclidean distance function
euc <- sqrt((cropped.stack[,4] - col.dat[col,4])^2 +
(cropped.stack[,5] - col.dat[col,5])^2 +
(cropped.stack[,6] - col.dat[col,6])^2 +
(cropped.stack[,7] - col.dat[col,7])^2 +
(cropped.stack[,8] - col.dat[col,8])^2 +
(cropped.stack[,9] - col.dat[col,9])^2 +
(cropped.stack[,10] - col.dat[col,10])^2)
return(euc)
}
euc.out <- do.call(cbind, lapply(FUN=clim.dist.df, X = 1:nrow(col.dat))) #Applying the distance function over the accessions
colnames(euc.out) <- paste(1:nrow(col.dat))
minEuc <- rowMins(euc.out)
clim.sim <- 1 - minEuc/extent.max
customMin <- function(x){
rw <- euc.out[x,]
which(rw == minEuc[x])
}
accession <- do.call(rbind, lapply(FUN = customMin, X = 1:nrow(euc.out)))
out <- cbind(accession, clim.sim, cropped.stack[,1])
colnames(out)[1:3] <- c("accession", "clim.sim","cell")
return(out) #returning data frame of relevant data
}
map.vals <- maps.clust.fun(clim.vals = best.medoids)
map.vals
})
click.list <- reactive({
map.vals <- sim.calcs()
cropped.stack <- map.crop()
if(is.null(input$leaf_click$lng) |
input$leaf_click$lng < -168 |
input$leaf_click$lng > -52 |
input$leaf_click$lat < 7 |
input$leaf_click$lat > 83
){return()}else{
click.xy <- SpatialPoints(coords = data.frame(input$leaf_click$lng, input$leaf_click$lat),
proj4string=CRS('+init=epsg:4326'))
click.trans <- spTransform(click.xy, '+init=epsg:3857')
map.cell <- cellFromXY(climClip(), click.trans)
}
center <- subset(map.vals, map.vals[,3] == map.cell, select=c("accession","clim.sim"))
vals <- subset(unscaled(), unscaled()[,1] == map.cell, select=c("MAT","DiurnalRange","TSeasonality",
"TWettestQtr","MAP","PSeasonality","PWarmestQtr"))
if(nrow(center) > 0){
sub <- data.frame(center,vals)
sub$clim.sim <- round(sub$clim.sim*100)
colnames(sub)[1:2] <- c("Assignment","Climate Similarity")
labeler <- function(x){
out <- paste("<b>", colnames(sub)[x], "</b>", ":", sub[,x], "<br>")
return(out)
}
out <- do.call(rbind, lapply(FUN=labeler, X=1:ncol(sub)))
}else{out <- NULL}
out
})
palettes <- reactive({
req(medoids())
palette.full <- c("#8B1117",
"#29D32A",
"#F743FB",
"#03ADC3",
"#F0A733",
"#6F1D68",
"#7B8BFA",
"#188D57",
"#1F3D46",
"#FA5B93",
"#C498C4",
"#F8651F",
"#4E5705",
"#B7755E",
"#283F85",
"#E028B0",
"#92C015",
"#0196DB",
"#A1AB60",
"#DC9AF8",
"#66BE9F",
"#317313",
"#B95D18",
"#A27811",
"#61410C",
"#107585",
"#9B005F",
"#E92725",
"#B62DC2",
"#6ECC4B",
"#F3606F",
"#CCB437",
"#622515",
"#7A2C8F",
"#98A008",
"#4CCBC4",
"#FF70B8",
"#7C9FF7",
"#393364",
"#C64704",
"#4F673D",
"#A96AD3",
"#CB533C",
"#8ED14A",
"#9FAEC1",
"#C9A551",
"#85D1A2",
"#C6548A",
"#524874",
"#653A35")
palette <- palette.full[1:nrow(medoids())]
})
box.react <- eventReactive(input$goButton,{
map.vals <- sim.calcs()
medoid.print <- medprint()
forPlot <- cbind(map.vals[,1], unscaled()[,4:10]) %>% as.data.frame()
colnames(forPlot) <- c("accession", colnames(unscaled()[,4:10]))
melt <- withProgress(message="Formatting for box and whisker plots", value=0.93,
melt(forPlot, id.vars = "accession", measure.vars = c(colnames(forPlot[2:8]))))
melt$accession <- factor(melt$accession, levels = c(1:input$cluster.num))
melt
})
ggSelection <- reactive({
req(box.react)
medoid.print <- medprint()
palette <- palettes()
if(nrow(medoid.print) > 25){
cols <- 2
}else{
cols <- 1
}
box <- ggplot(data=box.react() %>% filter(variable == input$ggVar1 | variable == input$ggVar2 | variable == input$ggVar3),
aes(x=accession, y=value, fill=accession))+
theme_bw()+
geom_boxplot()+
scale_fill_manual(values=palette)+
guides(fill= guide_legend(title="Climate\nCenter\nAssignment", ncol= cols))+
facet_wrap(~variable, scales= "free_y", ncol=1)+
xlab("Climate Center Assignments")+
ylab("")+
theme(axis.text.x = element_text(angle = 90, hjust = 1),
text = element_text(size = 18, face = 'bold'))
withProgress(message="Generating box and whisker plots", value=0.97, box)
})
rasStack <- eventReactive(input$goButton,{
cropped.stack <- map.crop()
extent.max <- max.find()
best.medoids <- medoids()
map.vals <- sim.calcs()
medoid.print <- medprint()
progress <- shiny::Progress$new()
on.exit(progress$close())
progress$set(message = "Projecting rasters", value = 0.7)
leaf.template <- raster(nrow=nrow(climClip()), ncol = ncol(climClip()),
xmn=xmin(climClip()), xmx= xmax(climClip()),
ymn=ymin(climClip()), ymx=ymax(climClip()),
resolution=c(927.6624, 927.6624),
crs="+init=epsg:3857")
clim.ras <- leaf.template
bound.ras <- leaf.template
values(clim.ras)[cropped.stack[,'cell']] <- round(map.vals[,'clim.sim']*100)
values(bound.ras)[cropped.stack[,'cell']] <- as.integer(map.vals[,'accession'])
dataType(clim.ras) <- "INT1U"
dataType(bound.ras) <- "INT1U"
stack(clim.ras,bound.ras)
})
rasterPals <- eventReactive(input$goButton,{
cropped.stack <- map.crop()
extent.max <- max.find()
best.medoids <- medoids()
map.vals <- sim.calcs()
medoid.print <- medprint()
clim.ras <- rasStack()[[1]]
bound.ras <- rasStack()[[2]]
clim.ras <- rasStack()[[1]]
bound.ras <- rasStack()[[2]]
grays <- withProgress(value=0.8, message="Assigning Aesthetics",gray.colors(n=10, start = 1, end = 0, alpha = NULL))
sim.pal <- withProgress(value=0.90, message="Assigning Aesthetics",colorNumeric(grays, minValue(clim.ras):maxValue(clim.ras),
na.color = 'transparent'))
ras.zone.pal <- withProgress(value=0.95, message="Assigning Aesthetics",colorFactor(palettes(),
domain=factor(1:nrow(medoid.print)),
na.color = 'transparent'))
c(sim.pal, ras.zone.pal)
})
observeEvent(input$goButton,{
input$goButton
if(input$goButton[1]==0){
return()
}
cropped.stack <- isolate(map.crop())
extent.max <- isolate(max.find())
best.medoids <- isolate(medoids())
map.vals <- isolate(sim.calcs())
medoid.print <- isolate(medprint())
clim.ras <- isolate(rasStack()[[1]])
bound.ras <- isolate(rasStack()[[2]])
sim.pal <- isolate(rasterPals()[[1]])
ras.zone.pal <- isolate(rasterPals()[[2]])
progress <- shiny::Progress$new()
on.exit(progress$close())
progress$set(message = "Rendering map", value = 0.99)
ext <- extent(clim.ras)
extPoly <- as(ext, "SpatialPolygons")
sp::proj4string(extPoly) <- "+init=epsg:3857"
extLatLon <- extent(spTransform(extPoly, CRS("+init=epsg:4326")))
leafletProxy("leaf") %>%
flyToBounds(lng1 = extLatLon[1], lng2 = extLatLon[2], lat1 = extLatLon[3], lat2 = extLatLon[4]) %>%
clearMarkers() %>%
clearImages() %>%
clearControls() %>%
clearShapes() %>%
addCircleMarkers(data=medoid.print, lng= ~x, lat =~y,
radius=6, color='white',fillOpacity = 1, stroke = F,
group="Overlays", label=~medoid.print[,1]) %>%
addCircleMarkers(data=medoid.print, lng= ~x, lat =~y,
radius=4, color= palettes(),fillOpacity = 1, stroke = F,
group="Overlays", label=~medoid.print[,1] ) %>%
addRasterImage(clim.ras, colors = sim.pal, opacity = 0.9,
project=FALSE, maxBytes = 8 * 1024 * 1024, group="Overlays") %>%
addRasterImage(bound.ras, colors = ras.zone.pal, opacity = 0.45,
project=FALSE, maxBytes = 8 * 1024 * 1024, group="Overlays") %>%
addLayersControl(baseGroups = c("Light Basemap", "Terrain"),
overlayGroups = c("Overlays"),
options = layersControlOptions(collapsed = F),
position=ifelse(nrow(medoid.print) > 30, "topleft", "topright")) %>%
addLegend("topright",pal = ras.zone.pal,
values = factor(1:nrow(medoid.print)),
title ="Assignment",
layerId = 'assignL') %>%
addLegend(ifelse(nrow(medoid.print) > 20, "bottomleft", "topright"),
pal = sim.pal, values = minValue(clim.ras):maxValue(clim.ras),
title ="Climate<br>Similarity", bins = 5,
layerId = 'simL')
})
observe({
if(!is.null(input$leaf_click$lng) && !is.null(click.list())){
leafletProxy("leaf") %>%
clearPopups() %>%
addPopups(lng=input$leaf_click$lng, lat=input$leaf_click$lat,
popup=paste(
"<b>", "Long:", "</b>", round(input$leaf_click$lng, 5), "<br>",
"<b>", "Lat:","</b>", round(input$leaf_click$lat, 5), "<br>",
paste(click.list(), collapse="")))}
})
output$boxPlot <- renderPlot({
ggSelection()
})
output$centerTable <- renderDataTable({
raw <- medprint() %>% dplyr::select(-cell) %>% dplyr::rename(Latitude = y, Longitude = x)
raw
})
output$downloadData <- downloadHandler(
filename = paste("climate_partitioning_data_",Sys.Date(),".zip", sep=""),
content = function(fname) {
progress <- shiny::Progress$new()
on.exit(progress$close())
old.wd <- getwd()
setwd(temp.folder)
print(temp.folder)
cropped.stack <- isolate(map.crop())
extent.max <- isolate(max.find())
best.medoids <- isolate(medoids())
map.vals <- isolate(sim.calcs())
medoid.print <- isolate(medprint())
box.react <- isolate(box.react())
fs <- c("simval.tif", "center.assignment.tif", "center.data.csv","metadata.txt","assignments.boxplot.pdf")
progress$set(message = "Rasterizing Data", value = 0.25)
clim.ras <- rasStack()[[1]]
bound.ras <- rasStack()[[2]]
projClim.ras <- projectRaster(clim.ras, crs = '+init=epsg:4326')
projBound.ras <- projectRaster(bound.ras, crs = '+init=epsg:4326', method = 'ngb')
NAvalue(projClim.ras) <- 0
NAvalue(projBound.ras) <- 0
progress$set(message = "Writing Raster Files", value = 0.5)
writeRaster(projClim.ras, "simval.tif", format="GTiff", overwrite=TRUE, datatype = "INT1U", NAflag = 0)
writeRaster(projBound.ras,"center.assignment.tif", format="GTiff", overwrite=TRUE, datatype = "INT1U", NAflag = 0)
if(nrow(medoid.print) > 25){
cols <- 2
}else{
cols <- 1
}
box <- ggplot(data=box.react(), aes(x=accession, y=value, fill=accession))+
theme_bw()+
geom_boxplot()+
scale_fill_manual(values=palettes())+
guides(fill= guide_legend(title="Climate\nCenter\nAssignment", ncol= cols))+
facet_wrap(~variable, scales= "free_y", ncol=1)+
xlab("Climate Center Assignments")+
ylab("")+
theme(axis.text.x = element_text(angle = 90, hjust = 1),
text = element_text(size = 18, face = 'bold'))
withProgress(message = "Saving box plot data", value = 0.75,
ggsave(filename=paste(temp.folder,"/assignments.boxplot.pdf",sep=""),
plot=box, width=8.5,height=15, dpi=300))
write.csv(medoid.print, file = "center.data.csv", row.names = FALSE)
cat("Explanation of contents:",
"",
"simval.tif: this raster contains the climate similarity values for the extent of interest. It reports how climatically close each cell is to its climate center assignment",
"",
"center.assignment.tif: this raster contains values for climate center assignments for all cells within the extent of interest",
"",
"center.data.csv: this file contains coordinates and climate variate values for all climate centers generated in these analyses",
"",
"assignments.boxplot.pdf: this plot displays the distribution of climate data for the cells within each center assignment ",
"",
"Symbology instructions:",
"",
"Set high values of the simval.tif as black and low values as white. Overlay center.assignment.tif and set it to 50% Opacity with values as categorical, each a unique color"
, file="metadata.txt",sep="\n")
print (fs)
progress$set(message = "Compressing Files", value = 0.9)
zip(zipfile=fname, files=fs)
setwd(old.wd)
},
contentType = "application/zip"
)
})