-
Notifications
You must be signed in to change notification settings - Fork 111
/
testDoctorAI.py
292 lines (243 loc) · 10.8 KB
/
testDoctorAI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
#################################################################
# Code written by Edward Choi ([email protected])
# For bug report, please contact author using the email address
#################################################################
import sys
import numpy as np
import cPickle as pickle
from collections import OrderedDict
import argparse
import theano
import theano.tensor as T
from theano import config
from Queue import heapq
import operator
import time
import warnings
def recallTop(y_true, y_pred, rank=[10, 20, 30]):
recall = list()
for i in range(len(y_pred)):
thisOne = list()
codes = y_true[i]
tops = y_pred[i]
for rk in rank:
thisOne.append(len(set(codes).intersection(set(tops[:rk])))*1.0/len(set(codes)))
recall.append( thisOne )
return (np.array(recall)).mean(axis=0).tolist()
def calculate_r_squared(trueVec, predVec, options):
if options['useLogTime']:
trueVec = np.log(np.array(trueVec) + options['logEps'])
mean_duration = np.log(options['mean_duration'])
else:
trueVec = np.array(trueVec)
mean_duration = options['mean_duration']
predVec = np.array(predVec)
numerator = ((trueVec - predVec) ** 2).sum()
denominator = ((trueVec - mean_duration) ** 2).sum()
return 1.0 - (numerator / denominator)
def numpy_floatX(data):
return np.asarray(data, dtype=config.floatX)
def init_tparams(params):
tparams = OrderedDict()
for key, value in params.iteritems():
tparams[key] = theano.shared(value, name=key)
return tparams
def gru_layer(tparams, emb, layerIndex, hiddenDimSize, mask=None):
timesteps = emb.shape[0]
if emb.ndim == 3: n_samples = emb.shape[1]
else: n_samples = 1
W_rx = T.dot(emb, tparams['W_r_'+layerIndex])
W_zx = T.dot(emb, tparams['W_z_'+layerIndex])
Wx = T.dot(emb, tparams['W_'+layerIndex])
def stepFn(stepMask, wrx, wzx, wx, h):
r = T.nnet.sigmoid(wrx + T.dot(h, tparams['U_r_'+layerIndex]) + tparams['b_r_'+layerIndex])
z = T.nnet.sigmoid(wzx + T.dot(h, tparams['U_z_'+layerIndex]) + tparams['b_z_'+layerIndex])
h_tilde = T.tanh(wx + T.dot(r*h, tparams['U_'+layerIndex]) + tparams['b_'+layerIndex])
h_new = z * h + ((1. - z) * h_tilde)
h_new = stepMask[:, None] * h_new + (1. - stepMask)[:, None] * h
return h_new#, output, time
results, updates = theano.scan(fn=stepFn, sequences=[mask,W_rx,W_zx,Wx], outputs_info=T.alloc(numpy_floatX(0.0), n_samples, hiddenDimSize), name='gru_layer'+layerIndex, n_steps=timesteps)
return results
def build_model(tparams, options):
x = T.tensor3('x', dtype=config.floatX)
t = T.matrix('t', dtype=config.floatX)
mask = T.matrix('mask', dtype=config.floatX)
n_timesteps = x.shape[0]
n_samples = x.shape[1]
emb = T.dot(x, tparams['W_emb'])
if options['useTime']:
emb = T.concatenate([t.reshape([n_timesteps,n_samples,1]), emb], axis=2) #Adding the time element to the embedding
inputVector = emb
for i, hiddenDimSize in enumerate(options['hiddenDimSize']):
memories = gru_layer(tparams, inputVector, str(i), hiddenDimSize, mask=mask)
inputVector = memories * 0.5
def softmaxStep(memory2d):
return T.nnet.softmax(T.dot(memory2d, tparams['W_output']) + tparams['b_output'])
results, updates = theano.scan(fn=softmaxStep, sequences=[inputVector], outputs_info=None, name='softmax_layer', n_steps=n_timesteps)
results = results * mask[:,:,None]
duration = 0.0
if options['predictTime']:
duration = T.maximum(T.dot(inputVector, tparams['W_time']) + tparams['b_time'], 0)
duration = duration.reshape([n_timesteps,n_samples]) * mask
return x, t, mask, results, duration
elif options['useTime']:
return x, t, mask, results
else:
return x, mask, results
def load_data(dataFile, labelFile, timeFile):
test_set_x = np.array(pickle.load(open(dataFile, 'rb')))
test_set_y = np.array(pickle.load(open(labelFile, 'rb')))
test_set_t = None
if len(timeFile) > 0:
test_set_t = np.array(pickle.load(open(timeFile, 'rb')))
def len_argsort(seq):
return sorted(range(len(seq)), key=lambda x: len(seq[x]))
sorted_index = len_argsort(test_set_x)
test_set_x = [test_set_x[i] for i in sorted_index]
test_set_y = [test_set_y[i] for i in sorted_index]
if len(timeFile) > 0:
test_set_t = [test_set_t[i] for i in sorted_index]
test_set = (test_set_x, test_set_y, test_set_t)
return test_set
def padMatrixWithTime(seqs, times, options):
lengths = np.array([len(seq) for seq in seqs]) - 1
n_samples = len(seqs)
maxlen = np.max(lengths)
inputDimSize = options['inputDimSize']
numClass = options['numClass']
x = np.zeros((maxlen, n_samples, inputDimSize)).astype(config.floatX)
t = np.zeros((maxlen, n_samples)).astype(config.floatX)
mask = np.zeros((maxlen, n_samples)).astype(config.floatX)
for idx, (seq,time) in enumerate(zip(seqs,times)):
for xvec, subseq in zip(x[:,idx,:], seq[:-1]):
xvec[subseq] = 1.
mask[:lengths[idx], idx] = 1.
t[:lengths[idx], idx] = time[:-1]
if options['useLogTime']:
t = np.log(t + options['logEps'])
return x, t, mask, lengths
def padMatrixWithoutTime(seqs, options):
lengths = np.array([len(seq) for seq in seqs]) - 1
n_samples = len(seqs)
maxlen = np.max(lengths)
inputDimSize = options['inputDimSize']
numClass = options['numClass']
x = np.zeros((maxlen, n_samples, inputDimSize)).astype(config.floatX)
mask = np.zeros((maxlen, n_samples)).astype(config.floatX)
for idx, seq in enumerate(seqs):
for xvec, subseq in zip(x[:,idx,:], seq[:-1]):
xvec[subseq] = 1.
mask[:lengths[idx], idx] = 1.
return x, mask, lengths
def test_doctorAI(
modelFile='model.txt',
seqFile='seq.txt',
inputDimSize=20000,
labelFile='label.txt',
numClass=500,
timeFile='',
predictTime=False,
useLogTime=True,
hiddenDimSize=[200,200],
batchSize=100,
logEps=1e-8,
mean_duration=20.0,
verbose=False
):
options = locals().copy()
if len(timeFile) > 0: useTime = True
else: useTime = False
options['useTime'] = useTime
models = np.load(modelFile)
tparams = init_tparams(models)
print 'build model ... ',
if predictTime:
x, t, mask, codePred, timePred = build_model(tparams, options)
predict_code = theano.function(inputs=[x,t,mask], outputs=codePred, name='predict_code')
predict_time = theano.function(inputs=[x,t,mask], outputs=timePred, name='predict_time')
elif useTime:
x, t, mask, codePred = build_model(tparams, options)
predict_code = theano.function(inputs=[x,t,mask], outputs=codePred, name='predict_code')
else:
x, mask, codePred = build_model(tparams, options)
predict_code = theano.function(inputs=[x,mask], outputs=codePred, name='predict_code')
options['inputDimSize']=models['W_emb'].shape[0]
options['numClass']=models['b_output'].shape[0]
print 'load data ... ',
testSet = load_data(seqFile, labelFile, timeFile)
n_batches = int(np.ceil(float(len(testSet[0])) / float(batchSize)))
print 'done'
predVec = []
trueVec = []
predTimeVec = []
trueTimeVec = []
iteration = 0
for batchIndex in range(n_batches):
tempX = testSet[0][batchIndex*batchSize: (batchIndex+1)*batchSize]
tempY = testSet[1][batchIndex*batchSize: (batchIndex+1)*batchSize]
if predictTime:
tempT = testSet[2][batchIndex*batchSize: (batchIndex+1)*batchSize]
x, t, mask, lengths = padMatrixWithTime(tempX, tempT, options)
codeResults = predict_code(x, t, mask)
timeResults = predict_time(x, t, mask)
elif useTime:
tempT = testSet[2][batchIndex*batchSize: (batchIndex+1)*batchSize]
x, t, mask, lengths = padMatrixWithTime(tempX, tempT, options)
codeResults = predict_code(x, t, mask)
else:
x, mask, lengths = padMatrixWithoutTime(tempX, options)
codeResults = predict_code(x, mask)
for i in range(codeResults.shape[1]):
tensorMatrix = codeResults[:,i,:]
thisY = tempY[i][1:]
for timeIndex in range(lengths[i]):
if len(thisY[timeIndex]) == 0: continue
trueVec.append(thisY[timeIndex])
output = tensorMatrix[timeIndex]
predVec.append(zip(*heapq.nlargest(30, enumerate(output), key=operator.itemgetter(1)))[0])
if predictTime:
for i in range(timeResults.shape[1]):
timeVec = timeResults[:,i]
trueTimeVec.extend(tempT[i][1:])
for timeIndex in range(lengths[i]):
predTimeVec.append(timeVec[timeIndex])
if (iteration % 10 == 0) and verbose: print 'iteration:%d/%d' % (iteration, n_batches)
iteration += 1
if iteration == 10: break
recall = recallTop(trueVec, predVec)
print 'recall@10:%f, recall@20:%f, recall@30:%f' % (recall[0], recall[1], recall[2])
if predictTime:
r_squared = calculate_r_squared(trueTimeVec, predTimeVec, options)
print 'R2:%f' % r_squared
def parse_arguments(parser):
parser.add_argument('model_file', type=str, metavar='<model_file>', help='The path to the model file saved by Doctor AI')
parser.add_argument('seq_file', type=str, metavar='<visit_file>', help='The path to the Pickled file containing visit information of patients')
parser.add_argument('label_file', type=str, metavar='<label_file>', help='The path to the Pickled file containing label information of patients')
parser.add_argument('hidden_dim_size', type=str, metavar='<hidden_dim_size>', help='The size of the hidden layers of the Doctor AI. This is a string argument. For example, [500,400] means you are using a two-layer GRU where the lower layer uses a 500-dimensional hidden layer, and the upper layer uses a 400-dimensional hidden layer. (default value: [200,200])')
parser.add_argument('--time_file', type=str, default='', help='The path to the Pickled file containing durations between visits of patients. If you are not using duration information, do not use this option')
parser.add_argument('--predict_time', type=int, default=0, choices=[0,1], help='Use this option if you want Doctor AI to also predict the time duration until the next visit (0 for false, 1 for true) (default value: 0)')
parser.add_argument('--use_log_time', type=int, default=1, choices=[0,1], help='Use logarithm of time duration to dampen the impact of the outliers (0 for false, 1 for true) (default value: 1)')
parser.add_argument('--batch_size', type=int, default=100, help='The size of a single mini-batch (default value: 100)')
parser.add_argument('--mean_duration', type=float, default=20.0, help='The mean value of the durations between visits of the training data. This will be used to calculate the R^2 error (default value: 20.0)')
parser.add_argument('--verbose', action='store_true', help='Print output after every 10 mini-batches (default false)')
args = parser.parse_args()
return args
if __name__ == '__main__':
parser = argparse.ArgumentParser()
args = parse_arguments(parser)
hiddenDimSize = [int(strDim) for strDim in args.hidden_dim_size[1:-1].split(',')]
if args.predict_time and args.time_file == '':
print 'Cannot predict time duration without time file'
sys.exit()
test_doctorAI(
modelFile=args.model_file,
seqFile=args.seq_file,
labelFile=args.label_file,
timeFile=args.time_file,
predictTime=args.predict_time,
useLogTime=args.use_log_time,
hiddenDimSize=hiddenDimSize,
batchSize=args.batch_size,
mean_duration=args.mean_duration,
verbose=args.verbose
)