forked from nachi-hebbar/Forest-Fire-Prediction-Website
-
Notifications
You must be signed in to change notification settings - Fork 0
/
forest_fire.py
34 lines (23 loc) · 814 Bytes
/
forest_fire.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#!C:\Users\Lenovo\AppData\Local\Programs\Python\Python37-32\python.exe
import numpy as np
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
import warnings
import pickle
warnings.filterwarnings("ignore")
data = pd.read_csv("Forest_fire.csv")
data = np.array(data)
X = data[1:, 1:-1]
y = data[1:, -1]
y = y.astype('int')
X = X.astype('int')
# print(X,y)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)
inputt=[int(x) for x in "45 32 60".split(' ')]
final=[np.array(inputt)]
b = log_reg.predict_proba(final)
pickle.dump(log_reg,open('model.pkl','wb'))
model=pickle.load(open('model.pkl','rb'))