forked from RobotLocomotion/drake
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpolynomial.cc
993 lines (915 loc) · 35.9 KB
/
polynomial.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
#include "drake/common/symbolic/polynomial.h"
#include <algorithm>
#include <map>
#include <numeric>
#include <sstream>
#include <stdexcept>
#include <unordered_map>
#include <utility>
#include <fmt/format.h>
#define DRAKE_COMMON_SYMBOLIC_EXPRESSION_DETAIL_HEADER
#include "drake/common/symbolic/expression/expression_cell.h"
#undef DRAKE_COMMON_SYMBOLIC_EXPRESSION_DETAIL_HEADER
#include "drake/common/symbolic/decompose.h"
using std::accumulate;
using std::make_pair;
using std::map;
using std::ostream;
using std::ostringstream;
using std::pair;
using std::runtime_error;
using std::to_string;
namespace drake {
namespace symbolic {
namespace {
// Note that `.Expand()` is needed in the following kinds of cases:
// e1 := (a + b)²
// e2 := - (a² + 2ab + b²)
// Without expanding the terms, they would not report as EqualTo.
bool AreEqualAfterExpanding(const Expression& e1, const Expression& e2) {
const Expression& e1_expanded = e1.is_expanded() ? e1 : e1.Expand();
const Expression& e2_expanded = e2.is_expanded() ? e2 : e2.Expand();
return e1_expanded.EqualTo(e2_expanded);
}
// Helper function to add coeff * m to a map (Monomial → Expression).
// Used to implement DecomposePolynomialVisitor::VisitAddition and
// Polynomial::Add.
void DoAddProduct(const Expression& coeff, const Monomial& m,
Polynomial::MapType* const map) {
if (is_zero(coeff)) {
return;
}
auto it = map->find(m);
if (it != map->end()) {
// m ∈ dom(map)
Expression& existing_coeff = it->second;
if (AreEqualAfterExpanding(-coeff, existing_coeff)) {
map->erase(it);
} else {
existing_coeff += coeff;
}
} else {
// m ∉ dom(map)
map->emplace_hint(it, m, coeff);
}
}
// Visitor class to implement `Polynomial(const Expression& e, const
// Variables& indeterminates)` constructor which decomposes an expression e
// w.r.t. indeterminates.
class DecomposePolynomialVisitor {
public:
Polynomial::MapType Decompose(const Expression& e,
const Variables& indeterminates) const {
// Note that it calls `Expression::Expand()` here.
return Visit(e.Expand(), indeterminates);
}
private:
Polynomial::MapType Visit(const Expression& e,
const Variables& indeterminates) const {
return VisitExpression<Polynomial::MapType>(this, e, indeterminates);
}
Polynomial::MapType VisitVariable(const Expression& e,
const Variables& indeterminates) const {
const Variable& var{get_variable(e)};
if (indeterminates.include(var)) {
// Monomial : var, coefficient : 1
return Polynomial::MapType{{{Monomial{var}, 1}}};
} else {
// Monomial : 1, coefficient : var
return Polynomial::MapType{{{Monomial{}, var}}};
}
}
Polynomial::MapType VisitConstant(const Expression& e,
const Variables&) const {
const double v{get_constant_value(e)};
if (v != 0) {
return Polynomial::MapType{{{Monomial(), v}}}; // = v.
}
return Polynomial::MapType{}; // = 0.
}
Polynomial::MapType VisitAddition(const Expression& e,
const Variables& indeterminates) const {
// e = c₀ + ∑ᵢ (cᵢ * eᵢ)
Polynomial::MapType new_map;
const double c_0{get_constant_in_addition(e)};
if (c_0 != 0) {
new_map.emplace(Monomial{}, c_0);
}
for (const pair<const Expression, double>& p :
get_expr_to_coeff_map_in_addition(e)) {
const Expression& e_i{p.first};
const double c_i{p.second};
// e = c₀ + ∑ᵢ (cᵢ * eᵢ) = c₀ + ∑ᵢ (cᵢ * (∑ⱼ mⱼ * cⱼ))
// ~~~~~~~~~~~
// Monomial of eᵢ
// = c₀ + ∑ᵢ ∑ⱼ ((cᵢ * cⱼ) * mⱼ)
// Note that we have cᵢ ≠ 0 ∧ cⱼ ≠ 0 → (cᵢ * cⱼ) ≠ 0.
const Polynomial::MapType map_i = Visit(e_i, indeterminates);
for (const pair<const Monomial, Expression>& term : map_i) {
const Monomial& m_j{term.first};
const Expression& c_j{term.second};
// Add (cᵢ * cⱼ) * mⱼ.
DoAddProduct(c_i * c_j, m_j, &new_map);
}
}
return new_map;
}
Polynomial::MapType VisitMultiplication(
const Expression& e, const Variables& indeterminates) const {
// e = c * ∏ᵢ pow(baseᵢ, exponentᵢ).
const double c = get_constant_in_multiplication(e);
DRAKE_DEMAND(c != 0);
Expression coeff{c};
Monomial m{};
for (const pair<const Expression, Expression>& p :
get_base_to_exponent_map_in_multiplication(e)) {
const Expression& base_i{p.first};
const Expression& exponent_i{p.second};
const pair<Monomial, Expression> result_i{
VisitPow(base_i, exponent_i, indeterminates)};
const Monomial& m_i{result_i.first};
const Expression& coeff_i{result_i.second};
m *= m_i;
coeff *= coeff_i;
}
DRAKE_DEMAND(!symbolic::is_zero(coeff));
return Polynomial::MapType{{m, coeff}};
}
pair<Monomial, Expression> VisitPow(const Expression& base,
const Expression& exponent,
const Variables& indeterminates) const {
if (intersect(base.GetVariables(), indeterminates).empty()) {
// Case: vars(baseᵢ) ∩ indeterminates = ∅.
if (!intersect(exponent.GetVariables(), indeterminates).empty()) {
// An indeterminate should not be in an exponent for the whole
// expression to be a polynomial. For example, aˣ is not a
// polynomial. That is, vars(exponentᵢ) ∩ indeterminates = ∅ should
// hold.
ostringstream oss;
oss << "Exponent " << exponent << " includes an indeterminates "
<< indeterminates << ".";
throw runtime_error(oss.str());
}
return make_pair(Monomial{}, pow(base, exponent));
} else {
// Case: vars(baseᵢ) ∩ indeterminates ≠ ∅.
// exponentᵢ should be a positive integer.
if (!is_constant(exponent) ||
!is_positive_integer(get_constant_value(exponent))) {
ostringstream oss;
oss << "Given the base " << base << ", the Exponent " << exponent
<< " should be a positive integer but it is not the case.";
throw runtime_error(oss.str());
}
const int n{static_cast<int>(get_constant_value(exponent))};
Expression coeff{1.0};
Monomial m{};
// `base` should be a product of indeterminates because `e` is a
// pre-expanded term.
if (!is_variable(base) && !is_multiplication(base)) {
ostringstream oss;
oss << "Base " << base << " is not a product of indeterminates, "
<< indeterminates;
throw runtime_error(oss.str());
}
for (const Variable& var : base.GetVariables()) {
if (indeterminates.include(var)) {
m *= Monomial{var, n};
} else {
coeff *= pow(Expression{var}, exponent);
}
}
return make_pair(m, coeff);
}
}
Polynomial::MapType VisitPow(const Expression& e,
const Variables& indeterminates) const {
const Expression& base{get_first_argument(e)};
const Expression& exponent{get_second_argument(e)};
const pair<Monomial, Expression> result{
VisitPow(base, exponent, indeterminates)};
return Polynomial::MapType{{{result.first, result.second}}};
}
Polynomial::MapType VisitDivision(const Expression& e,
const Variables& indeterminates) const {
// e = e₁ / e₂
const Expression& e1{get_first_argument(e)};
const Expression& e2{get_second_argument(e)};
// We require that the denominator e₂ is free of indeterminates for e to be
// a polynomial. This is because canceling a common factor is not a sound
// simplification. For example, `(x² + x) / x` is not equivalent to `x + 1`
// since the former is not defined at x = 0 while the latter is a total
// function over R.
// vars(e₂) ∩ indeterminates = ∅.
if (!intersect(e2.GetVariables(), indeterminates).empty()) {
ostringstream oss;
oss << "In " << e1 << " / " << e2 << ", the denominator " << e2
<< " should be free of the indeterminates, " << indeterminates << ".";
throw runtime_error(oss.str());
}
// Since e₁ is already expanded, we have:
//
// e = e₁ / e₂
// = (∑ᵢ cᵢ * monomialᵢ) / e₂
// = (∑ᵢ (cᵢ/e₂) * monomialᵢ
//
// where monomialᵢ is a monomial of indeterminates and cᵢ/e₂ is an
// expression free of indeterminates (which possibly includes decision
// variables).
Polynomial::MapType map{Visit(e1, indeterminates)};
for (auto& item : map) {
item.second /= e2;
}
return map;
}
// For a non-polynomial term, e, we return a map {1 ↦ e}. We require e to be
// free of indeterminates. For example, `VisitNonPolynomialTerm(sin(a + b),
// {x})` returns `{1 ↦ sin(a + b)}`. However, `VisitNonPolynomialTerm(sin(a +
// x), {x})` throws an exception because `sin(a + x)` includes an
// indeterminate `x`.
Polynomial::MapType VisitNonPolynomialTerm(
const Expression& e, const Variables& indeterminates) const {
// vars(e) ∩ indeterminates = ∅.
if (!intersect(e.GetVariables(), indeterminates).empty()) {
ostringstream oss;
oss << "The non-polynomial term " << e
<< " should be free of the indeterminates " << indeterminates << ".";
throw runtime_error(oss.str());
}
return {{Monomial{}, e}}; // = {1 ↦ e}.
}
Polynomial::MapType VisitAbs(const Expression& e,
const Variables& indeterminates) const {
return VisitNonPolynomialTerm(e, indeterminates);
}
Polynomial::MapType VisitLog(const Expression& e,
const Variables& indeterminates) const {
return VisitNonPolynomialTerm(e, indeterminates);
}
Polynomial::MapType VisitExp(const Expression& e,
const Variables& indeterminates) const {
return VisitNonPolynomialTerm(e, indeterminates);
}
Polynomial::MapType VisitSqrt(const Expression& e,
const Variables& indeterminates) const {
return VisitNonPolynomialTerm(e, indeterminates);
}
Polynomial::MapType VisitSin(const Expression& e,
const Variables& indeterminates) const {
return VisitNonPolynomialTerm(e, indeterminates);
}
Polynomial::MapType VisitCos(const Expression& e,
const Variables& indeterminates) const {
return VisitNonPolynomialTerm(e, indeterminates);
}
Polynomial::MapType VisitTan(const Expression& e,
const Variables& indeterminates) const {
return VisitNonPolynomialTerm(e, indeterminates);
}
Polynomial::MapType VisitAsin(const Expression& e,
const Variables& indeterminates) const {
return VisitNonPolynomialTerm(e, indeterminates);
}
Polynomial::MapType VisitAcos(const Expression& e,
const Variables& indeterminates) const {
return VisitNonPolynomialTerm(e, indeterminates);
}
Polynomial::MapType VisitAtan(const Expression& e,
const Variables& indeterminates) const {
return VisitNonPolynomialTerm(e, indeterminates);
}
Polynomial::MapType VisitAtan2(const Expression& e,
const Variables& indeterminates) const {
return VisitNonPolynomialTerm(e, indeterminates);
}
Polynomial::MapType VisitSinh(const Expression& e,
const Variables& indeterminates) const {
return VisitNonPolynomialTerm(e, indeterminates);
}
Polynomial::MapType VisitCosh(const Expression& e,
const Variables& indeterminates) const {
return VisitNonPolynomialTerm(e, indeterminates);
}
Polynomial::MapType VisitTanh(const Expression& e,
const Variables& indeterminates) const {
return VisitNonPolynomialTerm(e, indeterminates);
}
Polynomial::MapType VisitMin(const Expression& e,
const Variables& indeterminates) const {
return VisitNonPolynomialTerm(e, indeterminates);
}
Polynomial::MapType VisitMax(const Expression& e,
const Variables& indeterminates) const {
return VisitNonPolynomialTerm(e, indeterminates);
}
Polynomial::MapType VisitCeil(const Expression& e,
const Variables& indeterminates) const {
return VisitNonPolynomialTerm(e, indeterminates);
}
Polynomial::MapType VisitFloor(const Expression& e,
const Variables& indeterminates) const {
return VisitNonPolynomialTerm(e, indeterminates);
}
Polynomial::MapType VisitIfThenElse(const Expression& e,
const Variables& indeterminates) const {
return VisitNonPolynomialTerm(e, indeterminates);
}
Polynomial::MapType VisitUninterpretedFunction(
const Expression& e, const Variables& indeterminates) const {
return VisitNonPolynomialTerm(e, indeterminates);
}
// Makes VisitExpression a friend of this class so that it can use private
// methods.
friend Polynomial::MapType
drake::symbolic::VisitExpression<Polynomial::MapType>(
const DecomposePolynomialVisitor*, const Expression&, const Variables&);
};
Variables GetIndeterminates(const Polynomial::MapType& m) {
Variables vars;
for (const pair<const Monomial, Expression>& p : m) {
const Monomial& m_i{p.first};
vars.insert(m_i.GetVariables());
}
return vars;
}
Variables GetDecisionVariables(const Polynomial::MapType& m) {
Variables vars;
for (const pair<const Monomial, Expression>& p : m) {
const Expression& e_i{p.second};
vars.insert(e_i.GetVariables());
}
return vars;
}
} // namespace
Polynomial::Polynomial(MapType map)
: monomial_to_coefficient_map_{move(map)},
indeterminates_{GetIndeterminates(monomial_to_coefficient_map_)},
decision_variables_{GetDecisionVariables(monomial_to_coefficient_map_)} {
// Remove all [monomial, coeff] pair in monomial_to_coefficient_map_ if
// symbolic::is_zero(coeff) is true;
for (auto it = monomial_to_coefficient_map_.begin();
it != monomial_to_coefficient_map_.end();) {
if (symbolic::is_zero(it->second)) {
it = monomial_to_coefficient_map_.erase(it);
} else {
++it;
}
}
DRAKE_ASSERT_VOID(CheckInvariant());
};
Polynomial::Polynomial(const Monomial& m)
: monomial_to_coefficient_map_{{m, 1}},
indeterminates_{m.GetVariables()},
decision_variables_{} {
// No need to call CheckInvariant() because the following should hold.
DRAKE_ASSERT(decision_variables().empty());
}
Polynomial::Polynomial(const Expression& e) : Polynomial{e, e.GetVariables()} {
// No need to call CheckInvariant() because the following should hold.
DRAKE_ASSERT(decision_variables().empty());
}
Polynomial::Polynomial(const Expression& e, Variables indeterminates)
: monomial_to_coefficient_map_{DecomposePolynomialVisitor{}.Decompose(
e, indeterminates)},
indeterminates_{std::move(indeterminates)},
decision_variables_{GetDecisionVariables(monomial_to_coefficient_map_)} {
DRAKE_ASSERT_VOID(CheckInvariant());
}
const Variables& Polynomial::indeterminates() const { return indeterminates_; }
void Polynomial::SetIndeterminates(const Variables& new_indeterminates) {
if (new_indeterminates.IsSupersetOf(indeterminates_) &&
intersect(decision_variables_, new_indeterminates).empty()) {
indeterminates_ = new_indeterminates;
} else {
// TODO(soonho-tri): Optimize this part.
*this = Polynomial{ToExpression(), new_indeterminates};
}
}
const Variables& Polynomial::decision_variables() const {
return decision_variables_;
}
int Polynomial::Degree(const Variable& v) const {
int degree{0};
for (const pair<const Monomial, Expression>& p :
monomial_to_coefficient_map_) {
const Monomial& m{p.first};
degree = std::max(degree, m.degree(v));
}
return degree;
}
int Polynomial::TotalDegree() const {
int degree{0};
for (const pair<const Monomial, Expression>& p :
monomial_to_coefficient_map_) {
const Monomial& m{p.first};
degree = std::max(degree, m.total_degree());
}
return degree;
}
const Polynomial::MapType& Polynomial::monomial_to_coefficient_map() const {
return monomial_to_coefficient_map_;
}
Expression Polynomial::ToExpression() const {
// Returns ∑ᵢ (cᵢ * mᵢ).
return accumulate(
monomial_to_coefficient_map_.begin(), monomial_to_coefficient_map_.end(),
Expression{0.0},
[](const Expression& init, const pair<const Monomial, Expression>& p) {
const Monomial& m{p.first};
const Expression& coeff{p.second};
return init + (coeff * m.ToExpression());
});
}
namespace {
// Differentiates a monomial `m` with respect to a variable `x`. This is a
// helper function to implement Polynomial::Differentiate() method. It returns a
// pair `(n, m₁ * xⁿ⁻¹ * m₂)` where `d/dx (m₁ * xⁿ * m₂) = n * m₁ * xⁿ⁻¹ * m₂`
// holds. For example, d/dx x²y = 2xy and `DifferentiateMonomial(x²y, x)`
// returns `(2, xy)`.
pair<int, Monomial> DifferentiateMonomial(const Monomial& m,
const Variable& x) {
if (m.get_powers().count(x) == 0) {
// x does not appear in m. Returns (0, 1).
return make_pair(0, Monomial{});
}
map<Variable, int> powers{m.get_powers()};
auto it = powers.find(x);
DRAKE_ASSERT(it != powers.end() && it->second >= 1);
const int n{it->second--};
if (it->second == 0) {
powers.erase(it);
}
return make_pair(n, Monomial{powers});
}
} // namespace
Polynomial Polynomial::Differentiate(const Variable& x) const {
if (indeterminates().include(x)) {
// Case: x is an indeterminate.
// d/dx ∑ᵢ (cᵢ * mᵢ) = ∑ᵢ d/dx (cᵢ * mᵢ)
// = ∑ᵢ (cᵢ * d/dx mᵢ)
Polynomial::MapType map;
for (const pair<const Monomial, Expression>& term :
monomial_to_coefficient_map_) {
const Monomial& m{term.first};
const Expression& coeff{term.second};
const pair<int, Monomial> m_prime{
DifferentiateMonomial(m, x)}; // = d/dx m.
DoAddProduct(coeff * m_prime.first, m_prime.second,
&map); // Add cᵢ * d/dx m.
}
return Polynomial{map};
} else if (decision_variables().include(x)) {
// Case: x is a decision variable.
// d/dx ∑ᵢ (cᵢ * mᵢ) = ∑ᵢ d/dx (cᵢ * mᵢ)
// = ∑ᵢ ((d/dx cᵢ) * mᵢ)
Polynomial::MapType map;
for (const pair<const Monomial, Expression>& term :
monomial_to_coefficient_map_) {
const Monomial& m{term.first};
const Expression& coeff{term.second};
DoAddProduct(coeff.Differentiate(x), m, &map); // Add (d/dx cᵢ) * m.
}
return Polynomial{map};
} else {
// The variable `x` does not appear in this polynomial.
return Polynomial{}; // Zero polynomial.
}
}
Polynomial Polynomial::Integrate(const Variable& x) const {
if (decision_variables().include(x)) {
ostringstream oss;
oss << x << " is a decision variable of polynomial " << *this
<< ". Integration with respect to decision variables is not "
<< "supported yet.";
throw runtime_error(oss.str());
}
// Case: x is an indeterminate (or does not appear).
// ∫ ∑ᵢ (cᵢ * mᵢ) dx = ∑ᵢ (cᵢ * ∫ mᵢ dx)
Polynomial::MapType map;
for (const pair<const Monomial, Expression>& term :
monomial_to_coefficient_map_) {
const Monomial& m{term.first};
const Expression& coeff{term.second};
int n = 0;
auto new_powers = m.get_powers();
auto it = new_powers.find(x);
if (it != new_powers.end()) {
n = it->second++;
} else {
new_powers.emplace_hint(it, x, 1);
}
DoAddProduct((coeff / (n + 1)).Expand(), Monomial(new_powers), &map);
}
return Polynomial{map};
}
Polynomial Polynomial::Integrate(const Variable& x, double a, double b) const {
// Note: This is still correct if a > b.
const auto p = this->Integrate(x);
return p.EvaluatePartial(x, b) - p.EvaluatePartial(x, a);
}
double Polynomial::Evaluate(const Environment& env) const {
return accumulate(
monomial_to_coefficient_map_.begin(), monomial_to_coefficient_map_.end(),
0.0,
[&env](const double v, const pair<const Monomial, Expression>& item) {
const Monomial& monomial{item.first};
const Expression& coeff{item.second};
return v + monomial.Evaluate(env) * coeff.Evaluate(env);
});
}
Polynomial Polynomial::EvaluatePartial(const Environment& env) const {
MapType new_map; // Will use this to construct the return value.
for (const auto& product_i : monomial_to_coefficient_map_) {
const Expression& coeff_i{product_i.second};
const Expression coeff_i_partial_evaluated{coeff_i.EvaluatePartial(env)};
const Monomial& monomial_i{product_i.first};
const pair<double, Monomial> partial_eval_result{
monomial_i.EvaluatePartial(env)};
const double coeff_from_subst{partial_eval_result.first};
const Monomial& monomial_from_subst{partial_eval_result.second};
const Expression new_coeff_i{coeff_i_partial_evaluated * coeff_from_subst};
auto it = new_map.find(monomial_from_subst);
if (it == new_map.end()) {
new_map.emplace_hint(it, monomial_from_subst, new_coeff_i);
} else {
it->second += new_coeff_i;
}
}
return Polynomial{new_map};
}
Polynomial Polynomial::EvaluatePartial(const Variable& var,
const double c) const {
return EvaluatePartial({{{var, c}}});
}
Eigen::VectorXd Polynomial::EvaluateIndeterminates(
const Eigen::Ref<const VectorX<symbolic::Variable>>& indeterminates,
const Eigen::Ref<const Eigen::MatrixXd>& indeterminates_values) const {
Eigen::VectorXd polynomial_values =
Eigen::VectorXd::Zero(indeterminates_values.cols());
for (const auto& [monomial, coeff] : monomial_to_coefficient_map_) {
const symbolic::Expression& coeff_expanded =
coeff.is_expanded() ? coeff : coeff.Expand();
if (!is_constant(coeff_expanded)) {
throw std::runtime_error(
fmt::format("Polynomial::EvaluateIndeterminates: the coefficient {} "
"is not a constant",
coeff_expanded.to_string()));
}
const double coeff_val = get_constant_value(coeff_expanded);
polynomial_values +=
coeff_val * monomial.Evaluate(indeterminates, indeterminates_values);
}
return polynomial_values;
}
void Polynomial::EvaluateWithAffineCoefficients(
const Eigen::Ref<const VectorX<symbolic::Variable>>& indeterminates,
const Eigen::Ref<const Eigen::MatrixXd>& indeterminates_values,
Eigen::MatrixXd* A, VectorX<symbolic::Variable>* decision_variables,
Eigen::VectorXd* b) const {
// First put all the decision variables into an Eigen vector.
decision_variables->resize(decision_variables_.size());
std::unordered_map<symbolic::Variable::Id, int> map_var_to_index;
int variable_count = 0;
for (const auto& var : decision_variables_) {
(*decision_variables)(variable_count) = var;
map_var_to_index.emplace(var.get_id(), variable_count);
variable_count++;
}
const int num_indeterminate_samples = indeterminates_values.cols();
A->resize(num_indeterminate_samples, variable_count);
A->setZero();
b->resize(num_indeterminate_samples);
b->setZero();
// Each term in the polynomial is m(x) * c, where m(x) is the
// monomial and c is the coefficient of the monomial. Since each coefficient
// c can be written as c = a_coeff * decision_variables + b_coeff, this
// term can be written as m(x)*a_coeff * decision_variables + m(x)*b_coeff.
Eigen::RowVectorXd a_coeff(decision_variables->rows());
double b_coeff;
for (const auto& [monomial, monomial_coeff] : monomial_to_coefficient_map_) {
a_coeff.setZero();
b_coeff = 0;
const symbolic::Expression monomial_coeff_expand = monomial_coeff.Expand();
DecomposeAffineExpression(monomial_coeff_expand, map_var_to_index, &a_coeff,
&b_coeff);
const Eigen::VectorXd monomial_vals =
monomial.Evaluate(indeterminates, indeterminates_values);
*A += monomial_vals * a_coeff;
*b += monomial_vals * b_coeff;
}
}
Polynomial& Polynomial::operator+=(const Polynomial& p) {
for (const pair<const Monomial, Expression>& item :
p.monomial_to_coefficient_map_) {
const Monomial& m{item.first};
const Expression& coeff{item.second};
DoAddProduct(coeff, m, &monomial_to_coefficient_map_);
}
indeterminates_ += p.indeterminates();
decision_variables_ += p.decision_variables();
DRAKE_ASSERT_VOID(CheckInvariant());
return *this;
}
Polynomial& Polynomial::operator+=(const Monomial& m) {
// No need to call CheckInvariant() since it's called inside of Add.
return AddProduct(1.0, m);
}
Polynomial& Polynomial::operator+=(const double c) {
// No need to call CheckInvariant() since it's called inside of Add.
return AddProduct(c, Monomial{});
}
Polynomial& Polynomial::operator+=(const Variable& v) {
if (indeterminates().include(v)) {
return AddProduct(1.0, Monomial{v});
} else {
return AddProduct(v, Monomial{});
}
}
Polynomial& Polynomial::operator-=(const Polynomial& p) {
// No need to call CheckInvariant() since it's called inside of operator+=.
return *this += -p;
}
Polynomial& Polynomial::operator-=(const Monomial& m) {
// No need to call CheckInvariant() since it's called inside of Add.
return AddProduct(-1.0, m);
}
Polynomial& Polynomial::operator-=(const double c) {
// No need to call CheckInvariant() since it's called inside of Add.
return AddProduct(-c, Monomial{});
}
Polynomial& Polynomial::operator-=(const Variable& v) {
if (indeterminates().include(v)) {
return AddProduct(-1.0, Monomial{v});
} else {
return AddProduct(-v, Monomial{});
}
}
Polynomial& Polynomial::operator*=(const Polynomial& p) {
// (c₁₁ * m₁₁ + ... + c₁ₙ * m₁ₙ) * (c₂₁ * m₂₁ + ... + c₂ₘ * m₂ₘ)
// = (c₁₁ * m₁₁ + ... + c₁ₙ * m₁ₙ) * c₂₁ * m₂₁ + ... +
// (c₁₁ * m₁₁ + ... + c₁ₙ * m₁ₙ) * c₂ₘ * m₂ₘ
MapType new_map{};
for (const auto& p1 : monomial_to_coefficient_map_) {
for (const auto& p2 : p.monomial_to_coefficient_map()) {
const Monomial new_monomial{p1.first * p2.first};
const Expression new_coeff{p1.second * p2.second};
DoAddProduct(new_coeff, new_monomial, &new_map);
}
}
monomial_to_coefficient_map_ = std::move(new_map);
indeterminates_ += p.indeterminates();
decision_variables_ += p.decision_variables();
DRAKE_ASSERT_VOID(CheckInvariant());
return *this;
}
Polynomial& Polynomial::operator*=(const Monomial& m) {
MapType new_map;
for (const pair<const Monomial, Expression>& p :
monomial_to_coefficient_map_) {
const Monomial& m_i{p.first};
const Expression& coeff_i{p.second};
new_map.emplace(m * m_i, coeff_i);
}
monomial_to_coefficient_map_ = std::move(new_map);
indeterminates_ += m.GetVariables();
DRAKE_ASSERT_VOID(CheckInvariant());
return *this;
}
Polynomial& Polynomial::operator*=(const double c) {
if (c == 0) {
this->monomial_to_coefficient_map_.clear();
return *this;
}
for (pair<const Monomial, Expression>& p : monomial_to_coefficient_map_) {
Expression& coeff = p.second;
coeff *= c;
}
// No need to call CheckInvariant() since `c` doesn't include a variable
// and c != 0.
return *this;
}
Polynomial& Polynomial::operator*=(const Variable& v) {
if (indeterminates().include(v)) {
return *this *= Monomial{v};
} else {
for (auto& p : monomial_to_coefficient_map_) {
Expression& coeff = p.second;
coeff *= v;
}
decision_variables_.insert(v);
return *this;
}
}
bool Polynomial::EqualTo(const Polynomial& p) const {
// We do not use unordered_map<Monomial, Expression>::operator== as it uses
// Expression::operator== (which returns a symbolic formula) instead of
// Expression::EqualTo(which returns a bool), when the coefficient is a
// symbolic expression.
const Polynomial::MapType& map1{monomial_to_coefficient_map_};
const Polynomial::MapType& map2{p.monomial_to_coefficient_map()};
if (map1.size() != map2.size()) {
return false;
}
for (const auto& pair1 : map1) {
const Monomial& m{pair1.first};
const Expression& e1{pair1.second};
const auto it = map2.find(m);
if (it == map2.end()) {
// m is not in map2, so map1 and map2 are not the same.
return false;
}
const Expression& e2{it->second};
if (!e1.EqualTo(e2)) {
return false;
}
}
return true;
}
bool Polynomial::CoefficientsAlmostEqual(const Polynomial& p,
double tolerance) const {
return (*this - p)
.Expand()
.RemoveTermsWithSmallCoefficients(tolerance)
.EqualTo(Polynomial());
}
Formula Polynomial::operator==(const Polynomial& p) const {
// 1) Let diff = p - (this polynomial).
// 2) Extract the condition where diff is zero.
// That is, all coefficients should be zero.
const Polynomial diff{p - *this};
Formula ret{Formula::True()};
for (const pair<const Monomial, Expression>& item :
diff.monomial_to_coefficient_map_) {
const Expression& coeff{item.second};
ret = ret && (coeff == 0.0);
}
return ret;
}
Formula Polynomial::operator!=(const Polynomial& p) const {
return !(*this == p);
}
Polynomial& Polynomial::AddProduct(const Expression& coeff, const Monomial& m) {
DoAddProduct(coeff, m, &monomial_to_coefficient_map_);
indeterminates_ += m.GetVariables();
decision_variables_ += coeff.GetVariables();
DRAKE_ASSERT_VOID(CheckInvariant());
return *this;
}
Polynomial Polynomial::Expand() const {
Polynomial::MapType expanded_poly_map;
for (const auto& [monomial, coeff] : monomial_to_coefficient_map_) {
const symbolic::Expression coeff_expanded = coeff.Expand();
if (!symbolic::is_zero(coeff_expanded)) {
expanded_poly_map.emplace(monomial, coeff_expanded);
}
}
return symbolic::Polynomial(std::move(expanded_poly_map));
}
Polynomial Polynomial::RemoveTermsWithSmallCoefficients(
double coefficient_tol) const {
DRAKE_DEMAND(coefficient_tol > 0);
MapType cleaned_polynomial{};
for (const auto& term : monomial_to_coefficient_map_) {
if (is_constant(term.second) &&
std::abs(get_constant_value(term.second)) <= coefficient_tol) {
// The coefficients are small.
continue;
} else {
cleaned_polynomial.emplace_hint(cleaned_polynomial.end(), term.first,
term.second);
}
}
return Polynomial(cleaned_polynomial);
}
namespace {
bool IsEvenOrOdd(const Polynomial& p, bool check_even) {
for (const auto& [monomial, coeff] : p.monomial_to_coefficient_map()) {
// If we check p is even/odd, then we only need to check monomials with
// odd/even-degrees have coefficient = 0
if (monomial.total_degree() % 2 == static_cast<int>(check_even)) {
const symbolic::Expression& coeff_expanded =
coeff.is_expanded() ? coeff : coeff.Expand();
if (!(is_constant(coeff_expanded) &&
get_constant_value(coeff_expanded) == 0)) {
return false;
}
}
}
return true;
}
} // namespace
bool Polynomial::IsEven() const {
return IsEvenOrOdd(*this, true /* check_even=true */);
}
bool Polynomial::IsOdd() const {
return IsEvenOrOdd(*this, false /* check_even=false*/);
}
void Polynomial::CheckInvariant() const {
// TODO(hongkai.dai and soonho.kong): improves the computation time of
// CheckInvariant(). See github issue
// https://github.com/RobotLocomotion/drake/issues/10229
Variables vars{intersect(decision_variables(), indeterminates())};
if (!vars.empty()) {
ostringstream oss;
oss << "Polynomial " << *this
<< " does not satisfy the invariant because the following variable(s) "
"are used as decision variables and indeterminates at the same "
"time:\n"
<< vars << ".";
throw runtime_error(oss.str());
}
// Check if any [monomial, coeff] pair has symbolic::is_zero(coeff)
for (const auto& [monomial, coeff] : monomial_to_coefficient_map_) {
if (symbolic::is_zero(coeff)) {
ostringstream oss;
oss << "Polynomial " << *this
<< " does not satisfy the invariant because the coefficient of the "
"monomial "
<< monomial << " is 0.\n";
throw runtime_error(oss.str());
}
}
}
Polynomial operator-(const Polynomial& p) { return -1 * p; }
Polynomial operator+(Polynomial p1, const Polynomial& p2) { return p1 += p2; }
Polynomial operator+(Polynomial p, const Monomial& m) { return p += m; }
Polynomial operator+(const Monomial& m, Polynomial p) { return p += m; }
Polynomial operator+(const Monomial& m1, const Monomial& m2) {
return Polynomial(m1) + m2;
}
Polynomial operator+(Polynomial p, const double c) { return p += c; }
Polynomial operator+(const double c, Polynomial p) { return p += c; }
Polynomial operator+(const Monomial& m, const double c) {
return Polynomial(m) + c;
}
Polynomial operator+(const double c, const Monomial& m) {
return c + Polynomial(m);
}
Polynomial operator+(Polynomial p, const Variable& v) { return p += v; }
Polynomial operator+(const Variable& v, Polynomial p) { return p += v; }
Polynomial operator-(Polynomial p1, const Polynomial& p2) { return p1 -= p2; }
Polynomial operator-(Polynomial p, const Monomial& m) { return p -= m; }
Polynomial operator-(const Monomial& m, Polynomial p) {
return p = -1 * p + m; // p' = m - p = -1 * p + m.
}
Polynomial operator-(const Monomial& m1, const Monomial& m2) {
return Polynomial(m1) - m2;
}
Polynomial operator-(Polynomial p, const double c) { return p -= c; }
Polynomial operator-(const double c, Polynomial p) { return p = -p + c; }
Polynomial operator-(const Monomial& m, const double c) {
return Polynomial(m) - c;
}
Polynomial operator-(const double c, const Monomial& m) {
return c - Polynomial(m);
}
Polynomial operator-(Polynomial p, const Variable& v) { return p -= v; }
Polynomial operator-(const Variable& v, const Polynomial& p) {
return Polynomial(v, p.indeterminates()) - p;
}
Polynomial operator*(Polynomial p1, const Polynomial& p2) { return p1 *= p2; }
Polynomial operator*(Polynomial p, const Monomial& m) { return p *= m; }
Polynomial operator*(const Monomial& m, Polynomial p) { return p *= m; }
Polynomial operator*(const double c, Polynomial p) { return p *= c; }
Polynomial operator*(Polynomial p, const double c) { return p *= c; }
Polynomial operator*(const Monomial& m, double c) { return Polynomial(m) * c; }
Polynomial operator*(double c, const Monomial& m) { return c * Polynomial(m); }
Polynomial operator*(Polynomial p, const Variable& v) { return p *= v; }
Polynomial operator*(const Variable& v, Polynomial p) { return p *= v; }
Polynomial operator/(Polynomial p, const double v) {
for (auto& item : p.monomial_to_coefficient_map_) {
item.second /= v;
}
return p;
}
Polynomial pow(const Polynomial& p, int n) {
// TODO(soonho-tri): Optimize this by not relying on ToExpression() method.
return Polynomial{pow(p.ToExpression(), n), p.indeterminates()};
}
MatrixX<Polynomial> Jacobian(const Eigen::Ref<const VectorX<Polynomial>>& f,
const Eigen::Ref<const VectorX<Variable>>& vars) {
DRAKE_DEMAND(vars.size() != 0);
const auto n{f.size()};
const auto m{vars.size()};
MatrixX<Polynomial> J(n, m);
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
J(i, j) = f[i].Differentiate(vars[j]);
}
}
return J;
}
ostream& operator<<(ostream& os, const Polynomial& p) {
const Polynomial::MapType& map{p.monomial_to_coefficient_map()};
if (map.empty()) {
return os << 0;
}
auto it = map.begin();
os << it->second << "*" << it->first;
for (++it; it != map.end(); ++it) {
os << " + " << it->second << "*" << it->first;
}
return os;
}
} // namespace symbolic
} // namespace drake