forked from RobotLocomotion/drake
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrational_function.cc
307 lines (246 loc) · 8.84 KB
/
rational_function.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#include "drake/common/symbolic/rational_function.h"
#include <utility>
namespace drake {
namespace symbolic {
RationalFunction::RationalFunction()
: numerator_{} /* zero polynomial */, denominator_{1} {}
RationalFunction::RationalFunction(Polynomial numerator, Polynomial denominator)
: numerator_{std::move(numerator)}, denominator_{std::move(denominator)} {
DRAKE_DEMAND(!denominator_.monomial_to_coefficient_map()
.empty() /* zero polynomial */);
DRAKE_ASSERT_VOID(CheckIndeterminates());
}
RationalFunction::RationalFunction(const Polynomial& p)
: RationalFunction(p, Polynomial(1)) {}
RationalFunction::RationalFunction(const Monomial& m)
: RationalFunction(Polynomial(m)) {}
RationalFunction::RationalFunction(double c)
: RationalFunction(Polynomial(c), Polynomial(1)) {}
bool RationalFunction::EqualTo(const RationalFunction& f) const {
return numerator_.EqualTo(f.numerator()) &&
denominator_.EqualTo(f.denominator());
}
double RationalFunction::Evaluate(const Environment& env) const {
return numerator_.Evaluate(env) / denominator_.Evaluate(env);
}
Formula RationalFunction::operator==(const RationalFunction& f) const {
return denominator_ * f.numerator() == numerator_ * f.denominator();
}
Formula RationalFunction::operator!=(const RationalFunction& f) const {
return !(*this == f);
}
std::ostream& operator<<(std::ostream& os, const RationalFunction& f) {
os << "(" << f.numerator() << ") / (" << f.denominator() << ")";
return os;
}
void RationalFunction::CheckIndeterminates() const {
const Variables vars1{intersect(numerator_.indeterminates(),
denominator_.decision_variables())};
const Variables vars2{intersect(numerator_.decision_variables(),
denominator_.indeterminates())};
if (!vars1.empty() || !vars2.empty()) {
std::ostringstream oss;
oss << "RationalFunction " << *this << " is invalid.\n";
if (!vars1.empty()) {
oss << "The following variable(s) "
"are used as indeterminates in the numerator and decision "
"variables in the denominator at the same time:\n"
<< vars1 << ".\n";
}
if (!vars2.empty()) {
oss << "The following variable(s) "
"are used as decision variables in the numerator and "
"indeterminates variables in the denominator at the same time:\n"
<< vars2 << ".\n";
}
throw std::logic_error(oss.str());
}
}
Expression RationalFunction::ToExpression() const {
return numerator_.ToExpression() / denominator_.ToExpression();
}
RationalFunction& RationalFunction::operator+=(const RationalFunction& f) {
if (f.denominator().EqualTo(denominator_)) {
numerator_ = numerator_ + f.numerator();
} else {
numerator_ = numerator_ * f.denominator() + denominator_ * f.numerator();
denominator_ *= f.denominator();
}
return *this;
}
RationalFunction& RationalFunction::operator+=(const Polynomial& p) {
numerator_ = p * denominator_ + numerator_;
return *this;
}
RationalFunction& RationalFunction::operator+=(const Monomial& m) {
numerator_ = m * denominator_ + numerator_;
return *this;
}
RationalFunction& RationalFunction::operator+=(double c) {
numerator_ = c * denominator_ + numerator_;
return *this;
}
RationalFunction& RationalFunction::operator-=(const RationalFunction& f) {
*this += -f;
return *this;
}
RationalFunction& RationalFunction::operator-=(const Polynomial& p) {
*this += -p;
return *this;
}
RationalFunction& RationalFunction::operator-=(const Monomial& m) {
*this += -m;
return *this;
}
RationalFunction& RationalFunction::operator-=(double c) { return *this += -c; }
RationalFunction& RationalFunction::operator*=(const RationalFunction& f) {
numerator_ *= f.numerator();
denominator_ *= f.denominator();
DRAKE_ASSERT_VOID(CheckIndeterminates());
return *this;
}
RationalFunction& RationalFunction::operator*=(const Polynomial& p) {
numerator_ *= p;
DRAKE_ASSERT_VOID(CheckIndeterminates());
return *this;
}
RationalFunction& RationalFunction::operator*=(const Monomial& m) {
numerator_ *= m;
DRAKE_ASSERT_VOID(CheckIndeterminates());
return *this;
}
RationalFunction& RationalFunction::operator*=(double c) {
numerator_ *= c;
return *this;
}
RationalFunction& RationalFunction::operator/=(const RationalFunction& f) {
if (f.numerator().monomial_to_coefficient_map().empty()) {
throw std::logic_error("RationalFunction: operator/=: The divider is 0.");
}
numerator_ *= f.denominator();
denominator_ *= f.numerator();
DRAKE_ASSERT_VOID(CheckIndeterminates());
return *this;
}
RationalFunction& RationalFunction::operator/=(const Polynomial& p) {
if (p.monomial_to_coefficient_map().empty()) {
throw std::logic_error("RationalFunction: operator/=: The divider is 0.");
}
denominator_ *= p;
DRAKE_ASSERT_VOID(CheckIndeterminates());
return *this;
}
RationalFunction& RationalFunction::operator/=(const Monomial& m) {
if (m.total_degree() == 0) {
throw std::logic_error("RationalFunction: operator/=: The divider is 0.");
}
denominator_ *= m;
DRAKE_ASSERT_VOID(CheckIndeterminates());
return *this;
}
RationalFunction& RationalFunction::operator/=(double c) {
if (c == 0) {
throw std::logic_error("RationalFunction: operator/=: The divider is 0.");
}
denominator_ *= c;
return *this;
}
RationalFunction operator-(RationalFunction f) {
f.numerator_ *= -1;
return f;
}
RationalFunction operator+(RationalFunction f1, const RationalFunction& f2) {
return f1 += f2;
}
RationalFunction operator+(RationalFunction f, const Polynomial& p) {
return f += p;
}
RationalFunction operator+(const Polynomial& p, RationalFunction f) {
return f += p;
}
RationalFunction operator+(RationalFunction f, const Monomial& m) {
return f += m;
}
RationalFunction operator+(const Monomial& m, RationalFunction f) {
return f += m;
}
RationalFunction operator+(RationalFunction f, double c) { return f += c; }
RationalFunction operator+(double c, RationalFunction f) { return f += c; }
RationalFunction operator-(RationalFunction f1, const RationalFunction& f2) {
return f1 -= f2;
}
RationalFunction operator-(RationalFunction f, const Polynomial& p) {
return f -= p;
}
RationalFunction operator-(const Polynomial& p, const RationalFunction& f) {
return -f + p;
}
RationalFunction operator-(RationalFunction f, const Monomial& m) {
return f -= m;
}
RationalFunction operator-(const Monomial& m, RationalFunction f) {
return -f + m;
}
RationalFunction operator-(RationalFunction f, double c) { return f -= c; }
RationalFunction operator-(double c, RationalFunction f) { return f = -f + c; }
RationalFunction operator*(RationalFunction f1, const RationalFunction& f2) {
return f1 *= f2;
}
RationalFunction operator*(RationalFunction f, const Polynomial& p) {
return f *= p;
}
RationalFunction operator*(const Polynomial& p, RationalFunction f) {
return f *= p;
}
RationalFunction operator*(RationalFunction f, const Monomial& m) {
return f *= m;
}
RationalFunction operator*(const Monomial& m, RationalFunction f) {
return f *= m;
}
RationalFunction operator*(RationalFunction f, double c) { return f *= c; }
RationalFunction operator*(double c, RationalFunction f) { return f *= c; }
RationalFunction operator/(RationalFunction f1, const RationalFunction& f2) {
return f1 /= f2;
}
RationalFunction operator/(RationalFunction f, const Polynomial& p) {
return f /= p;
}
RationalFunction operator/(const Polynomial& p, const RationalFunction& f) {
if (f.numerator().monomial_to_coefficient_map().empty()) {
throw std::logic_error("RationalFunction: operator/=: The divider is 0.");
}
return {p * f.denominator(), f.numerator()};
}
RationalFunction operator/(RationalFunction f, const Monomial& m) {
return f /= m;
}
RationalFunction operator/(const Monomial& m, RationalFunction f) {
if (f.numerator().monomial_to_coefficient_map().empty()) {
throw std::logic_error("RationalFunction: operator/=: The divider is 0.");
}
return {m * f.denominator(), f.numerator()};
}
RationalFunction operator/(RationalFunction f, double c) { return f /= c; }
RationalFunction operator/(double c, const RationalFunction& f) {
if (f.numerator().monomial_to_coefficient_map().empty()) {
throw std::logic_error("RationalFunction: operator/=: The divider is 0.");
}
return {c * f.denominator(), f.numerator()};
}
RationalFunction pow(const RationalFunction& f, int n) {
if (n == 0) {
return {Polynomial(1), Polynomial(1)};
} else if (n >= 1) {
return {pow(f.numerator(), n), pow(f.denominator(), n)};
} else {
// n < 0
return {pow(f.denominator(), -n), pow(f.numerator(), -n)};
}
}
void RationalFunction::SetIndeterminates(const Variables& new_indeterminates) {
numerator_.SetIndeterminates(new_indeterminates);
denominator_.SetIndeterminates(new_indeterminates);
}
} // namespace symbolic
} // namespace drake