forked from openvswitch/ovs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflow.h
1124 lines (967 loc) · 37.6 KB
/
flow.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef FLOW_H
#define FLOW_H 1
#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/icmp6.h>
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include "bitmap.h"
#include "byte-order.h"
#include "openvswitch/compiler.h"
#include "openflow/nicira-ext.h"
#include "openflow/openflow.h"
#include "openvswitch/flow.h"
#include "packets.h"
#include "hash.h"
#include "util.h"
struct dpif_flow_stats;
struct ds;
struct flow_wildcards;
struct minimask;
struct dp_packet;
struct ofputil_port_map;
struct pkt_metadata;
struct match;
/* Some flow fields are mutually exclusive or only appear within the flow
* pipeline. IPv6 headers are bigger than IPv4 and MPLS, and IPv6 ND packets
* are bigger than TCP,UDP and IGMP packets. */
#define FLOW_MAX_PACKET_U64S (FLOW_U64S \
/* Unused in datapath */ - FLOW_U64_SIZE(regs) \
- FLOW_U64_SIZE(metadata) \
/* L2.5/3 */ - FLOW_U64_SIZE(nw_src) /* incl. nw_dst */ \
- FLOW_U64_SIZE(mpls_lse) \
/* L4 */ - FLOW_U64_SIZE(tp_src) \
)
extern const uint8_t flow_segment_u64s[];
/* Configured maximum VLAN headers. */
extern int flow_vlan_limit;
#define FLOW_U64_OFFSET(FIELD) \
(offsetof(struct flow, FIELD) / sizeof(uint64_t))
#define FLOW_U64_OFFREM(FIELD) \
(offsetof(struct flow, FIELD) % sizeof(uint64_t))
/* Number of 64-bit units spanned by a 'FIELD'. */
#define FLOW_U64_SIZE(FIELD) \
DIV_ROUND_UP(FLOW_U64_OFFREM(FIELD) + MEMBER_SIZEOF(struct flow, FIELD), \
sizeof(uint64_t))
void flow_extract(struct dp_packet *, struct flow *);
void flow_zero_wildcards(struct flow *, const struct flow_wildcards *);
void flow_unwildcard_tp_ports(const struct flow *, struct flow_wildcards *);
void flow_get_metadata(const struct flow *, struct match *flow_metadata);
const char *ct_state_to_string(uint32_t state);
uint32_t ct_state_from_string(const char *);
bool parse_ct_state(const char *state_str, uint32_t default_state,
uint32_t *ct_state, struct ds *);
bool validate_ct_state(uint32_t state, struct ds *);
void flow_clear_conntrack(struct flow *);
char *flow_to_string(const struct flow *, const struct ofputil_port_map *);
void format_flags(struct ds *ds, const char *(*bit_to_string)(uint32_t),
uint32_t flags, char del);
void format_flags_masked(struct ds *ds, const char *name,
const char *(*bit_to_string)(uint32_t),
uint32_t flags, uint32_t mask, uint32_t max_mask);
void format_packet_type_masked(struct ds *, ovs_be32 value, ovs_be32 mask);
int parse_flags(const char *s, const char *(*bit_to_string)(uint32_t),
char end, const char *field_name, char **res_string,
uint32_t *res_flags, uint32_t allowed, uint32_t *res_mask);
void flow_format(struct ds *, const struct flow *,
const struct ofputil_port_map *);
void flow_print(FILE *, const struct flow *, const struct ofputil_port_map *);
static inline int flow_compare_3way(const struct flow *, const struct flow *);
static inline bool flow_equal(const struct flow *, const struct flow *);
static inline size_t flow_hash(const struct flow *, uint32_t basis);
void flow_set_dl_vlan(struct flow *, ovs_be16 vid);
void flow_fix_vlan_tpid(struct flow *);
void flow_set_vlan_vid(struct flow *, ovs_be16 vid);
void flow_set_vlan_pcp(struct flow *, uint8_t pcp);
void flow_limit_vlans(int vlan_limit);
int flow_count_vlan_headers(const struct flow *);
void flow_skip_common_vlan_headers(const struct flow *a, int *p_an,
const struct flow *b, int *p_bn);
void flow_pop_vlan(struct flow*, struct flow_wildcards*);
void flow_push_vlan_uninit(struct flow*, struct flow_wildcards*);
int flow_count_mpls_labels(const struct flow *, struct flow_wildcards *);
int flow_count_common_mpls_labels(const struct flow *a, int an,
const struct flow *b, int bn,
struct flow_wildcards *wc);
void flow_push_mpls(struct flow *, int n, ovs_be16 mpls_eth_type,
struct flow_wildcards *, bool clear_flow_L3);
bool flow_pop_mpls(struct flow *, int n, ovs_be16 eth_type,
struct flow_wildcards *);
void flow_set_mpls_label(struct flow *, int idx, ovs_be32 label);
void flow_set_mpls_ttl(struct flow *, int idx, uint8_t ttl);
void flow_set_mpls_tc(struct flow *, int idx, uint8_t tc);
void flow_set_mpls_bos(struct flow *, int idx, uint8_t stack);
void flow_set_mpls_lse(struct flow *, int idx, ovs_be32 lse);
bool flow_compose(struct dp_packet *, const struct flow *, size_t);
bool parse_ipv6_ext_hdrs(const void **datap, size_t *sizep, uint8_t *nw_proto,
uint8_t *nw_frag);
ovs_be16 parse_dl_type(const struct eth_header *data_, size_t size);
bool parse_nsh(const void **datap, size_t *sizep, struct flow_nsh *key);
static inline uint64_t
flow_get_xreg(const struct flow *flow, int idx)
{
return ((uint64_t) flow->regs[idx * 2] << 32) | flow->regs[idx * 2 + 1];
}
static inline void
flow_set_xreg(struct flow *flow, int idx, uint64_t value)
{
flow->regs[idx * 2] = value >> 32;
flow->regs[idx * 2 + 1] = value;
}
static inline ovs_u128
flow_get_xxreg(const struct flow *flow, int idx)
{
ovs_u128 value;
value.u64.hi = (uint64_t) flow->regs[idx * 4] << 32;
value.u64.hi |= flow->regs[idx * 4 + 1];
value.u64.lo = (uint64_t) flow->regs[idx * 4 + 2] << 32;
value.u64.lo |= flow->regs[idx * 4 + 3];
return value;
}
static inline void
flow_set_xxreg(struct flow *flow, int idx, ovs_u128 value)
{
flow->regs[idx * 4] = value.u64.hi >> 32;
flow->regs[idx * 4 + 1] = value.u64.hi;
flow->regs[idx * 4 + 2] = value.u64.lo >> 32;
flow->regs[idx * 4 + 3] = value.u64.lo;
}
static inline int
flow_compare_3way(const struct flow *a, const struct flow *b)
{
return memcmp(a, b, sizeof *a);
}
static inline bool
flow_equal(const struct flow *a, const struct flow *b)
{
return !flow_compare_3way(a, b);
}
static inline size_t
flow_hash(const struct flow *flow, uint32_t basis)
{
return hash_bytes64((const uint64_t *)flow, sizeof *flow, basis);
}
static inline uint16_t
ofp_to_u16(ofp_port_t ofp_port)
{
return (OVS_FORCE uint16_t) ofp_port;
}
static inline uint32_t
odp_to_u32(odp_port_t odp_port)
{
return (OVS_FORCE uint32_t) odp_port;
}
static inline uint32_t
ofp11_to_u32(ofp11_port_t ofp11_port)
{
return (OVS_FORCE uint32_t) ofp11_port;
}
static inline ofp_port_t
u16_to_ofp(uint16_t port)
{
return OFP_PORT_C(port);
}
static inline odp_port_t
u32_to_odp(uint32_t port)
{
return ODP_PORT_C(port);
}
static inline ofp11_port_t
u32_to_ofp11(uint32_t port)
{
return OFP11_PORT_C(port);
}
static inline uint32_t
hash_ofp_port(ofp_port_t ofp_port)
{
return hash_int(ofp_to_u16(ofp_port), 0);
}
static inline uint32_t
hash_odp_port(odp_port_t odp_port)
{
return hash_int(odp_to_u32(odp_port), 0);
}
uint32_t flow_hash_5tuple(const struct flow *flow, uint32_t basis);
uint32_t flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis);
uint32_t flow_hash_symmetric_l3l4(const struct flow *flow, uint32_t basis,
bool inc_udp_ports );
/* Initialize a flow with random fields that matter for nx_hash_fields. */
void flow_random_hash_fields(struct flow *);
void flow_mask_hash_fields(const struct flow *, struct flow_wildcards *,
enum nx_hash_fields);
uint32_t flow_hash_fields(const struct flow *, enum nx_hash_fields,
uint16_t basis);
const char *flow_hash_fields_to_str(enum nx_hash_fields);
bool flow_hash_fields_valid(enum nx_hash_fields);
uint32_t flow_hash_in_wildcards(const struct flow *,
const struct flow_wildcards *,
uint32_t basis);
bool flow_equal_except(const struct flow *a, const struct flow *b,
const struct flow_wildcards *);
/* Bitmap for flow values. For each 1-bit the corresponding flow value is
* explicitly specified, other values are zeroes.
*
* map_t must be wide enough to hold any member of struct flow. */
typedef unsigned long long map_t;
#define MAP_T_BITS (sizeof(map_t) * CHAR_BIT)
#define MAP_1 (map_t)1
#define MAP_MAX TYPE_MAXIMUM(map_t)
#define MAP_IS_SET(MAP, IDX) ((MAP) & (MAP_1 << (IDX)))
/* Iterate through the indices of all 1-bits in 'MAP'. */
#define MAP_FOR_EACH_INDEX(IDX, MAP) \
ULLONG_FOR_EACH_1(IDX, MAP)
#define FLOWMAP_UNITS DIV_ROUND_UP(FLOW_U64S, MAP_T_BITS)
struct flowmap {
map_t bits[FLOWMAP_UNITS];
};
#define FLOWMAP_EMPTY_INITIALIZER { { 0 } }
static inline void flowmap_init(struct flowmap *);
static inline bool flowmap_equal(struct flowmap, struct flowmap);
static inline bool flowmap_is_set(const struct flowmap *, size_t idx);
static inline bool flowmap_are_set(const struct flowmap *, size_t idx,
unsigned int n_bits);
static inline void flowmap_set(struct flowmap *, size_t idx,
unsigned int n_bits);
static inline void flowmap_clear(struct flowmap *, size_t idx,
unsigned int n_bits);
static inline struct flowmap flowmap_or(struct flowmap, struct flowmap);
static inline struct flowmap flowmap_and(struct flowmap, struct flowmap);
static inline bool flowmap_is_empty(struct flowmap);
static inline unsigned int flowmap_n_1bits(struct flowmap);
#define FLOWMAP_HAS_FIELD(FM, FIELD) \
flowmap_are_set(FM, FLOW_U64_OFFSET(FIELD), FLOW_U64_SIZE(FIELD))
#define FLOWMAP_SET(FM, FIELD) \
flowmap_set(FM, FLOW_U64_OFFSET(FIELD), FLOW_U64_SIZE(FIELD))
#define FLOWMAP_SET__(FM, FIELD, SIZE) \
flowmap_set(FM, FLOW_U64_OFFSET(FIELD), \
DIV_ROUND_UP(SIZE, sizeof(uint64_t)))
/* XXX: Only works for full 64-bit units. */
#define FLOWMAP_CLEAR(FM, FIELD) \
BUILD_ASSERT_DECL(FLOW_U64_OFFREM(FIELD) == 0); \
BUILD_ASSERT_DECL(sizeof(((struct flow *)0)->FIELD) % sizeof(uint64_t) == 0); \
flowmap_clear(FM, FLOW_U64_OFFSET(FIELD), FLOW_U64_SIZE(FIELD))
/* Iterate through all units in 'FMAP'. */
#define FLOWMAP_FOR_EACH_UNIT(UNIT) \
for ((UNIT) = 0; (UNIT) < FLOWMAP_UNITS; (UNIT)++)
/* Iterate through all map units in 'FMAP'. */
#define FLOWMAP_FOR_EACH_MAP(MAP, FLOWMAP) \
for (size_t unit__ = 0; \
unit__ < FLOWMAP_UNITS && ((MAP) = (FLOWMAP).bits[unit__], true); \
unit__++)
struct flowmap_aux;
static inline bool flowmap_next_index(struct flowmap_aux *, size_t *idx);
#define FLOWMAP_AUX_INITIALIZER(FLOWMAP) { .unit = 0, .map = (FLOWMAP) }
/* Iterate through all struct flow u64 indices specified by 'MAP'. This is a
* slower but easier version of the FLOWMAP_FOR_EACH_MAP() &
* MAP_FOR_EACH_INDEX() combination. */
#define FLOWMAP_FOR_EACH_INDEX(IDX, MAP) \
for (struct flowmap_aux aux__ = FLOWMAP_AUX_INITIALIZER(MAP); \
flowmap_next_index(&aux__, &(IDX));)
/* Flowmap inline implementations. */
static inline void
flowmap_init(struct flowmap *fm)
{
memset(fm, 0, sizeof *fm);
}
static inline bool
flowmap_equal(struct flowmap a, struct flowmap b)
{
return !memcmp(&a, &b, sizeof a);
}
static inline bool
flowmap_is_set(const struct flowmap *fm, size_t idx)
{
return (fm->bits[idx / MAP_T_BITS] & (MAP_1 << (idx % MAP_T_BITS))) != 0;
}
/* Returns 'true' if any of the 'n_bits' bits starting at 'idx' are set in
* 'fm'. 'n_bits' can be at most MAP_T_BITS. */
static inline bool
flowmap_are_set(const struct flowmap *fm, size_t idx, unsigned int n_bits)
{
map_t n_bits_mask = (MAP_1 << n_bits) - 1;
size_t unit = idx / MAP_T_BITS;
idx %= MAP_T_BITS;
if (fm->bits[unit] & (n_bits_mask << idx)) {
return true;
}
/* The seemingly unnecessary bounds check on 'unit' is a workaround for a
* false-positive array out of bounds error by GCC 4.9. */
if (unit + 1 < FLOWMAP_UNITS && idx + n_bits > MAP_T_BITS) {
/* Check the remaining bits from the next unit. */
return fm->bits[unit + 1] & (n_bits_mask >> (MAP_T_BITS - idx));
}
return false;
}
/* Set the 'n_bits' consecutive bits in 'fm', starting at bit 'idx'.
* 'n_bits' can be at most MAP_T_BITS. */
static inline void
flowmap_set(struct flowmap *fm, size_t idx, unsigned int n_bits)
{
map_t n_bits_mask = (MAP_1 << n_bits) - 1;
size_t unit = idx / MAP_T_BITS;
idx %= MAP_T_BITS;
fm->bits[unit] |= n_bits_mask << idx;
/* The seemingly unnecessary bounds check on 'unit' is a workaround for a
* false-positive array out of bounds error by GCC 4.9. */
if (unit + 1 < FLOWMAP_UNITS && idx + n_bits > MAP_T_BITS) {
/* 'MAP_T_BITS - idx' bits were set on 'unit', set the remaining
* bits from the next unit. */
fm->bits[unit + 1] |= n_bits_mask >> (MAP_T_BITS - idx);
}
}
/* Clears the 'n_bits' consecutive bits in 'fm', starting at bit 'idx'.
* 'n_bits' can be at most MAP_T_BITS. */
static inline void
flowmap_clear(struct flowmap *fm, size_t idx, unsigned int n_bits)
{
map_t n_bits_mask = (MAP_1 << n_bits) - 1;
size_t unit = idx / MAP_T_BITS;
idx %= MAP_T_BITS;
fm->bits[unit] &= ~(n_bits_mask << idx);
/* The seemingly unnecessary bounds check on 'unit' is a workaround for a
* false-positive array out of bounds error by GCC 4.9. */
if (unit + 1 < FLOWMAP_UNITS && idx + n_bits > MAP_T_BITS) {
/* 'MAP_T_BITS - idx' bits were cleared on 'unit', clear the
* remaining bits from the next unit. */
fm->bits[unit + 1] &= ~(n_bits_mask >> (MAP_T_BITS - idx));
}
}
/* OR the bits in the flowmaps. */
static inline struct flowmap
flowmap_or(struct flowmap a, struct flowmap b)
{
struct flowmap map;
size_t unit;
FLOWMAP_FOR_EACH_UNIT (unit) {
map.bits[unit] = a.bits[unit] | b.bits[unit];
}
return map;
}
/* AND the bits in the flowmaps. */
static inline struct flowmap
flowmap_and(struct flowmap a, struct flowmap b)
{
struct flowmap map;
size_t unit;
FLOWMAP_FOR_EACH_UNIT (unit) {
map.bits[unit] = a.bits[unit] & b.bits[unit];
}
return map;
}
static inline bool
flowmap_is_empty(struct flowmap fm)
{
map_t map;
FLOWMAP_FOR_EACH_MAP (map, fm) {
if (map) {
return false;
}
}
return true;
}
static inline unsigned int
flowmap_n_1bits(struct flowmap fm)
{
unsigned int n_1bits = 0;
size_t unit;
FLOWMAP_FOR_EACH_UNIT (unit) {
n_1bits += count_1bits(fm.bits[unit]);
}
return n_1bits;
}
struct flowmap_aux {
size_t unit;
struct flowmap map;
};
static inline bool
flowmap_next_index(struct flowmap_aux *aux, size_t *idx)
{
for (;;) {
map_t *map = &aux->map.bits[aux->unit];
if (*map) {
*idx = aux->unit * MAP_T_BITS + raw_ctz(*map);
*map = zero_rightmost_1bit(*map);
return true;
}
if (++aux->unit >= FLOWMAP_UNITS) {
return false;
}
}
}
/* Compressed flow. */
/* A sparse representation of a "struct flow".
*
* A "struct flow" is fairly large and tends to be mostly zeros. Sparse
* representation has two advantages. First, it saves memory and, more
* importantly, minimizes the number of accessed cache lines. Second, it saves
* time when the goal is to iterate over only the nonzero parts of the struct.
*
* The map member hold one bit for each uint64_t in a "struct flow". Each
* 0-bit indicates that the corresponding uint64_t is zero, each 1-bit that it
* *may* be nonzero (see below how this applies to minimasks).
*
* The values indicated by 'map' always follow the miniflow in memory. The
* user of the miniflow is responsible for always having enough storage after
* the struct miniflow corresponding to the number of 1-bits in maps.
*
* Elements in values array are allowed to be zero. This is useful for "struct
* minimatch", for which ensuring that the miniflow and minimask members have
* same maps allows optimization. This allowance applies only to a miniflow
* that is not a mask. That is, a minimask may NOT have zero elements in its
* values.
*
* A miniflow is always dynamically allocated so that the maps are followed by
* at least as many elements as there are 1-bits in maps. */
struct miniflow {
struct flowmap map;
/* Followed by:
* uint64_t values[n];
* where 'n' is miniflow_n_values(miniflow). */
};
BUILD_ASSERT_DECL(sizeof(struct miniflow) % sizeof(uint64_t) == 0);
#define MINIFLOW_VALUES_SIZE(COUNT) ((COUNT) * sizeof(uint64_t))
static inline uint64_t *miniflow_values(struct miniflow *mf)
{
return (uint64_t *)(mf + 1);
}
static inline const uint64_t *miniflow_get_values(const struct miniflow *mf)
{
return (const uint64_t *)(mf + 1);
}
struct pkt_metadata;
/* The 'dst' must follow with buffer space for FLOW_U64S 64-bit units.
* 'dst->map' is ignored on input and set on output to indicate which fields
* were extracted. */
void miniflow_extract(struct dp_packet *packet, struct miniflow *dst);
void miniflow_map_init(struct miniflow *, const struct flow *);
void flow_wc_map(const struct flow *, struct flowmap *);
size_t miniflow_alloc(struct miniflow *dsts[], size_t n,
const struct miniflow *src);
void miniflow_init(struct miniflow *, const struct flow *);
void miniflow_clone(struct miniflow *, const struct miniflow *,
size_t n_values);
struct miniflow * miniflow_create(const struct flow *);
void miniflow_expand(const struct miniflow *, struct flow *);
static inline uint64_t flow_u64_value(const struct flow *flow, size_t index)
{
return ((uint64_t *)flow)[index];
}
static inline uint64_t *flow_u64_lvalue(struct flow *flow, size_t index)
{
return &((uint64_t *)flow)[index];
}
static inline size_t
miniflow_n_values(const struct miniflow *flow)
{
return flowmap_n_1bits(flow->map);
}
struct flow_for_each_in_maps_aux {
const struct flow *flow;
struct flowmap_aux map_aux;
};
static inline bool
flow_values_get_next_in_maps(struct flow_for_each_in_maps_aux *aux,
uint64_t *value)
{
size_t idx;
if (flowmap_next_index(&aux->map_aux, &idx)) {
*value = flow_u64_value(aux->flow, idx);
return true;
}
return false;
}
/* Iterate through all flow u64 values specified by 'MAPS'. */
#define FLOW_FOR_EACH_IN_MAPS(VALUE, FLOW, MAPS) \
for (struct flow_for_each_in_maps_aux aux__ \
= { (FLOW), FLOWMAP_AUX_INITIALIZER(MAPS) }; \
flow_values_get_next_in_maps(&aux__, &(VALUE));)
struct mf_for_each_in_map_aux {
size_t unit; /* Current 64-bit unit of the flowmaps
being processed. */
struct flowmap fmap; /* Remaining 1-bits corresponding to the
64-bit words in ‘values’ */
struct flowmap map; /* Remaining 1-bits corresponding to the
64-bit words of interest. */
const uint64_t *values; /* 64-bit words corresponding to the
1-bits in ‘fmap’. */
};
/* Get the data from ‘aux->values’ corresponding to the next lowest 1-bit
* in ‘aux->map’, given that ‘aux->values’ points to an array of 64-bit
* words corresponding to the 1-bits in ‘aux->fmap’, starting from the
* rightmost 1-bit.
*
* Returns ’true’ if the traversal is incomplete, ‘false’ otherwise.
* ‘aux’ is prepared for the next iteration after each call.
*
* This is used to traverse through, for example, the values in a miniflow
* representation of a flow key selected by non-zero 64-bit words in a
* corresponding subtable mask. */
static inline bool
mf_get_next_in_map(struct mf_for_each_in_map_aux *aux,
uint64_t *value)
{
map_t *map, *fmap;
map_t rm1bit;
/* Skip empty map units. */
while (OVS_UNLIKELY(!*(map = &aux->map.bits[aux->unit]))) {
/* Skip remaining data in the current unit before advancing
* to the next. */
aux->values += count_1bits(aux->fmap.bits[aux->unit]);
if (++aux->unit == FLOWMAP_UNITS) {
return false;
}
}
rm1bit = rightmost_1bit(*map);
*map -= rm1bit;
fmap = &aux->fmap.bits[aux->unit];
/* If the rightmost 1-bit found from the current unit in ‘aux->map’
* (‘rm1bit’) is also present in ‘aux->fmap’, store the corresponding
* value from ‘aux->values’ to ‘*value', otherwise store 0. */
if (OVS_LIKELY(*fmap & rm1bit)) {
/* Skip all 64-bit words in ‘values’ preceding the one corresponding
* to ‘rm1bit’. */
map_t trash = *fmap & (rm1bit - 1);
/* Avoid resetting 'fmap' and calling count_1bits() when trash is
* zero. */
if (trash) {
*fmap -= trash;
aux->values += count_1bits(trash);
}
*value = *aux->values;
} else {
*value = 0;
}
return true;
}
/* Iterate through miniflow u64 values specified by 'FLOWMAP'. */
#define MINIFLOW_FOR_EACH_IN_FLOWMAP(VALUE, FLOW, FLOWMAP) \
for (struct mf_for_each_in_map_aux aux__ = \
{ 0, (FLOW)->map, (FLOWMAP), miniflow_get_values(FLOW) }; \
mf_get_next_in_map(&aux__, &(VALUE));)
/* This can be used when it is known that 'idx' is set in 'map'. */
static inline const uint64_t *
miniflow_values_get__(const uint64_t *values, map_t map, size_t idx)
{
return values + count_1bits(map & ((MAP_1 << idx) - 1));
}
/* This can be used when it is known that 'u64_idx' is set in
* the map of 'mf'. */
static inline const uint64_t *
miniflow_get__(const struct miniflow *mf, size_t idx)
{
const uint64_t *values = miniflow_get_values(mf);
const map_t *map = mf->map.bits;
while (idx >= MAP_T_BITS) {
idx -= MAP_T_BITS;
values += count_1bits(*map++);
}
return miniflow_values_get__(values, *map, idx);
}
#define MINIFLOW_IN_MAP(MF, IDX) flowmap_is_set(&(MF)->map, IDX)
/* Get the value of the struct flow 'FIELD' as up to 8 byte wide integer type
* 'TYPE' from miniflow 'MF'. */
#define MINIFLOW_GET_TYPE(MF, TYPE, FIELD) \
(MINIFLOW_IN_MAP(MF, FLOW_U64_OFFSET(FIELD)) \
? ((OVS_FORCE const TYPE *)miniflow_get__(MF, FLOW_U64_OFFSET(FIELD))) \
[FLOW_U64_OFFREM(FIELD) / sizeof(TYPE)] \
: 0)
#define MINIFLOW_GET_U128(FLOW, FIELD) \
(ovs_u128) { .u64 = { \
(MINIFLOW_IN_MAP(FLOW, FLOW_U64_OFFSET(FIELD)) ? \
*miniflow_get__(FLOW, FLOW_U64_OFFSET(FIELD)) : 0), \
(MINIFLOW_IN_MAP(FLOW, FLOW_U64_OFFSET(FIELD) + 1) ? \
*miniflow_get__(FLOW, FLOW_U64_OFFSET(FIELD) + 1) : 0) } }
#define MINIFLOW_GET_U8(FLOW, FIELD) \
MINIFLOW_GET_TYPE(FLOW, uint8_t, FIELD)
#define MINIFLOW_GET_U16(FLOW, FIELD) \
MINIFLOW_GET_TYPE(FLOW, uint16_t, FIELD)
#define MINIFLOW_GET_BE16(FLOW, FIELD) \
MINIFLOW_GET_TYPE(FLOW, ovs_be16, FIELD)
#define MINIFLOW_GET_U32(FLOW, FIELD) \
MINIFLOW_GET_TYPE(FLOW, uint32_t, FIELD)
#define MINIFLOW_GET_BE32(FLOW, FIELD) \
MINIFLOW_GET_TYPE(FLOW, ovs_be32, FIELD)
#define MINIFLOW_GET_U64(FLOW, FIELD) \
MINIFLOW_GET_TYPE(FLOW, uint64_t, FIELD)
#define MINIFLOW_GET_BE64(FLOW, FIELD) \
MINIFLOW_GET_TYPE(FLOW, ovs_be64, FIELD)
static inline uint64_t miniflow_get(const struct miniflow *,
unsigned int u64_ofs);
static inline uint32_t miniflow_get_u32(const struct miniflow *,
unsigned int u32_ofs);
static inline ovs_be32 miniflow_get_be32(const struct miniflow *,
unsigned int be32_ofs);
static inline uint16_t miniflow_get_vid(const struct miniflow *, size_t);
static inline uint16_t miniflow_get_tcp_flags(const struct miniflow *);
static inline ovs_be64 miniflow_get_metadata(const struct miniflow *);
bool miniflow_equal(const struct miniflow *a, const struct miniflow *b);
bool miniflow_equal_in_minimask(const struct miniflow *a,
const struct miniflow *b,
const struct minimask *);
bool miniflow_equal_flow_in_minimask(const struct miniflow *a,
const struct flow *b,
const struct minimask *);
uint32_t miniflow_hash_5tuple(const struct miniflow *flow, uint32_t basis);
/* Compressed flow wildcards. */
/* A sparse representation of a "struct flow_wildcards".
*
* See the large comment on struct miniflow for details.
*
* Note: While miniflow can have zero data for a 1-bit in the map,
* a minimask may not! We rely on this in the implementation. */
struct minimask {
struct miniflow masks;
};
void minimask_init(struct minimask *, const struct flow_wildcards *);
struct minimask * minimask_create(const struct flow_wildcards *);
void minimask_combine(struct minimask *dst,
const struct minimask *a, const struct minimask *b,
uint64_t storage[FLOW_U64S]);
void minimask_expand(const struct minimask *, struct flow_wildcards *);
static inline uint32_t minimask_get_u32(const struct minimask *,
unsigned int u32_ofs);
static inline ovs_be32 minimask_get_be32(const struct minimask *,
unsigned int be32_ofs);
static inline uint16_t minimask_get_vid_mask(const struct minimask *, size_t);
static inline ovs_be64 minimask_get_metadata_mask(const struct minimask *);
bool minimask_equal(const struct minimask *a, const struct minimask *b);
bool minimask_has_extra(const struct minimask *, const struct minimask *);
/* Returns true if 'mask' matches every packet, false if 'mask' fixes any bits
* or fields. */
static inline bool
minimask_is_catchall(const struct minimask *mask)
{
/* For every 1-bit in mask's map, the corresponding value is non-zero,
* so the only way the mask can not fix any bits or fields is for the
* map the be zero. */
return flowmap_is_empty(mask->masks.map);
}
/* Returns the uint64_t that would be at byte offset '8 * u64_ofs' if 'flow'
* were expanded into a "struct flow". */
static inline uint64_t miniflow_get(const struct miniflow *flow,
unsigned int u64_ofs)
{
return MINIFLOW_IN_MAP(flow, u64_ofs) ? *miniflow_get__(flow, u64_ofs) : 0;
}
static inline uint32_t miniflow_get_u32(const struct miniflow *flow,
unsigned int u32_ofs)
{
uint64_t value = miniflow_get(flow, u32_ofs / 2);
#if WORDS_BIGENDIAN
return (u32_ofs & 1) ? value : value >> 32;
#else
return (u32_ofs & 1) ? value >> 32 : value;
#endif
}
static inline ovs_be32 miniflow_get_be32(const struct miniflow *flow,
unsigned int be32_ofs)
{
return (OVS_FORCE ovs_be32)miniflow_get_u32(flow, be32_ofs);
}
/* Returns the VID within the vlan_tci member of the "struct flow" represented
* by 'flow'. */
static inline uint16_t
miniflow_get_vid(const struct miniflow *flow, size_t n)
{
if (n < FLOW_MAX_VLAN_HEADERS) {
union flow_vlan_hdr hdr = {
.qtag = MINIFLOW_GET_BE32(flow, vlans[n])
};
return vlan_tci_to_vid(hdr.tci);
}
return 0;
}
/* Returns the uint32_t that would be at byte offset '4 * u32_ofs' if 'mask'
* were expanded into a "struct flow_wildcards". */
static inline uint32_t
minimask_get_u32(const struct minimask *mask, unsigned int u32_ofs)
{
return miniflow_get_u32(&mask->masks, u32_ofs);
}
static inline ovs_be32
minimask_get_be32(const struct minimask *mask, unsigned int be32_ofs)
{
return (OVS_FORCE ovs_be32)minimask_get_u32(mask, be32_ofs);
}
/* Returns the VID mask within the vlan_tci member of the "struct
* flow_wildcards" represented by 'mask'. */
static inline uint16_t
minimask_get_vid_mask(const struct minimask *mask, size_t n)
{
return miniflow_get_vid(&mask->masks, n);
}
/* Returns the value of the "tcp_flags" field in 'flow'. */
static inline uint16_t
miniflow_get_tcp_flags(const struct miniflow *flow)
{
return ntohs(MINIFLOW_GET_BE16(flow, tcp_flags));
}
/* Returns the value of the OpenFlow 1.1+ "metadata" field in 'flow'. */
static inline ovs_be64
miniflow_get_metadata(const struct miniflow *flow)
{
return MINIFLOW_GET_BE64(flow, metadata);
}
/* Returns the mask for the OpenFlow 1.1+ "metadata" field in 'mask'.
*
* The return value is all-1-bits if 'mask' matches on the whole value of the
* metadata field, all-0-bits if 'mask' entirely wildcards the metadata field,
* or some other value if the metadata field is partially matched, partially
* wildcarded. */
static inline ovs_be64
minimask_get_metadata_mask(const struct minimask *mask)
{
return MINIFLOW_GET_BE64(&mask->masks, metadata);
}
/* Perform a bitwise OR of miniflow 'src' flow data specified in 'subset' with
* the equivalent fields in 'dst', storing the result in 'dst'. 'subset' must
* be a subset of 'src's map. */
static inline void
flow_union_with_miniflow_subset(struct flow *dst, const struct miniflow *src,
struct flowmap subset)
{
uint64_t *dst_u64 = (uint64_t *) dst;
const uint64_t *p = miniflow_get_values(src);
map_t map;
FLOWMAP_FOR_EACH_MAP (map, subset) {
size_t idx;
MAP_FOR_EACH_INDEX(idx, map) {
dst_u64[idx] |= *p++;
}
dst_u64 += MAP_T_BITS;
}
}
/* Perform a bitwise OR of miniflow 'src' flow data with the equivalent
* fields in 'dst', storing the result in 'dst'. */
static inline void
flow_union_with_miniflow(struct flow *dst, const struct miniflow *src)
{
flow_union_with_miniflow_subset(dst, src, src->map);
}
static inline bool is_ct_valid(const struct flow *flow,
const struct flow_wildcards *mask,
struct flow_wildcards *wc)
{
/* Matches are checked with 'mask' and without 'wc'. */
if (mask && !wc) {
/* Must match at least one of the bits that implies a valid
* conntrack entry, or an explicit not-invalid. */
return flow->ct_state & (CS_NEW | CS_ESTABLISHED | CS_RELATED
| CS_REPLY_DIR | CS_SRC_NAT | CS_DST_NAT)
|| (flow->ct_state & CS_TRACKED
&& mask->masks.ct_state & CS_INVALID
&& !(flow->ct_state & CS_INVALID));
}
/* Else we are checking a fully extracted flow, where valid CT state always
* has either 'new', 'established', or 'reply_dir' bit set. */
#define CS_VALID_MASK (CS_NEW | CS_ESTABLISHED | CS_REPLY_DIR)
if (wc) {
wc->masks.ct_state |= CS_VALID_MASK;
}
return flow->ct_state & CS_VALID_MASK;
}
static inline void
pkt_metadata_from_flow(struct pkt_metadata *md, const struct flow *flow)
{
/* Update this function whenever struct flow changes. */
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 40);
md->recirc_id = flow->recirc_id;
md->dp_hash = flow->dp_hash;
flow_tnl_copy__(&md->tunnel, &flow->tunnel);
md->skb_priority = flow->skb_priority;
md->pkt_mark = flow->pkt_mark;
md->in_port = flow->in_port;
md->ct_state = flow->ct_state;
md->ct_zone = flow->ct_zone;
md->ct_mark = flow->ct_mark;
md->ct_label = flow->ct_label;
md->ct_orig_tuple_ipv6 = false;
if (is_ct_valid(flow, NULL, NULL)) {
if (flow->dl_type == htons(ETH_TYPE_IP)) {
md->ct_orig_tuple.ipv4 = (struct ovs_key_ct_tuple_ipv4) {
flow->ct_nw_src,
flow->ct_nw_dst,
flow->ct_tp_src,
flow->ct_tp_dst,
flow->ct_nw_proto,
};
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
md->ct_orig_tuple_ipv6 = true;
md->ct_orig_tuple.ipv6 = (struct ovs_key_ct_tuple_ipv6) {
flow->ct_ipv6_src,
flow->ct_ipv6_dst,
flow->ct_tp_src,
flow->ct_tp_dst,
flow->ct_nw_proto,
};
}
} else {
memset(&md->ct_orig_tuple, 0, sizeof md->ct_orig_tuple);
}
}
/* Often, during translation we need to read a value from a flow('FLOW') and
* unwildcard the corresponding bits in the wildcards('WC'). This macro makes
* it easier to do that. */
#define FLOW_WC_GET_AND_MASK_WC(FLOW, WC, FIELD) \
(((WC) ? WC_MASK_FIELD(WC, FIELD) : NULL), ((FLOW)->FIELD))
static inline bool is_ethernet(const struct flow *flow,
struct flow_wildcards *wc)
{
if (wc) {
WC_MASK_FIELD(wc, packet_type);
}
return flow->packet_type == htonl(PT_ETH);
}
static inline ovs_be16 get_dl_type(const struct flow *flow)
{
if (flow->packet_type == htonl(PT_ETH)) {
return flow->dl_type;
} else if (pt_ns(flow->packet_type) == OFPHTN_ETHERTYPE) {
return pt_ns_type_be(flow->packet_type);
} else {
return htons(FLOW_DL_TYPE_NONE);
}
}
static inline bool is_vlan(const struct flow *flow,
struct flow_wildcards *wc)
{
if (!is_ethernet(flow, wc)) {
return false;
}
if (wc) {
WC_MASK_FIELD_MASK(wc, vlans[0].tci, htons(VLAN_CFI));
}
return (flow->vlans[0].tci & htons(VLAN_CFI)) != 0;
}
static inline bool is_ip_any(const struct flow *flow)
{
return dl_type_is_ip_any(get_dl_type(flow));
}
static inline bool is_ip_proto(const struct flow *flow, uint8_t ip_proto,