forked from apache/spark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMimaExcludes.scala
758 lines (751 loc) · 45.8 KB
/
MimaExcludes.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import com.typesafe.tools.mima.core._
import com.typesafe.tools.mima.core.ProblemFilters._
/**
* Additional excludes for checking of Spark's binary compatibility.
*
* The Mima build will automatically exclude @DeveloperApi and @Experimental classes. This acts
* as an official audit of cases where we excluded other classes. Please use the narrowest
* possible exclude here. MIMA will usually tell you what exclude to use, e.g.:
*
* ProblemFilters.exclude[MissingMethodProblem]("org.apache.spark.rdd.RDD.take")
*
* It is also possible to exclude Spark classes and packages. This should be used sparingly:
*
* MimaBuild.excludeSparkClass("graphx.util.collection.GraphXPrimitiveKeyOpenHashMap")
*/
object MimaExcludes {
def excludes(version: String) = version match {
case v if v.startsWith("1.6") =>
Seq(
MimaBuild.excludeSparkPackage("deploy"),
MimaBuild.excludeSparkPackage("network"),
MimaBuild.excludeSparkPackage("unsafe"),
// These are needed if checking against the sbt build, since they are part of
// the maven-generated artifacts in 1.3.
excludePackage("org.spark-project.jetty"),
MimaBuild.excludeSparkPackage("unused"),
// SQL execution is considered private.
excludePackage("org.apache.spark.sql.execution"),
// SQL columnar is considered private.
excludePackage("org.apache.spark.sql.columnar"),
// The shuffle package is considered private.
excludePackage("org.apache.spark.shuffle"),
// The collections utlities are considered pricate.
excludePackage("org.apache.spark.util.collection")
) ++
MimaBuild.excludeSparkClass("streaming.flume.FlumeTestUtils") ++
MimaBuild.excludeSparkClass("streaming.flume.PollingFlumeTestUtils") ++
Seq(
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.ml.classification.LogisticCostFun.this"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.ml.classification.LogisticAggregator.add"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.ml.classification.LogisticAggregator.count")
) ++ Seq(
// SPARK-10381 Fix types / units in private AskPermissionToCommitOutput RPC message.
// This class is marked as `private` but MiMa still seems to be confused by the change.
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.scheduler.AskPermissionToCommitOutput.task"),
ProblemFilters.exclude[IncompatibleResultTypeProblem](
"org.apache.spark.scheduler.AskPermissionToCommitOutput.copy$default$2"),
ProblemFilters.exclude[IncompatibleMethTypeProblem](
"org.apache.spark.scheduler.AskPermissionToCommitOutput.copy"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.scheduler.AskPermissionToCommitOutput.taskAttempt"),
ProblemFilters.exclude[IncompatibleResultTypeProblem](
"org.apache.spark.scheduler.AskPermissionToCommitOutput.copy$default$3"),
ProblemFilters.exclude[IncompatibleMethTypeProblem](
"org.apache.spark.scheduler.AskPermissionToCommitOutput.this"),
ProblemFilters.exclude[IncompatibleMethTypeProblem](
"org.apache.spark.scheduler.AskPermissionToCommitOutput.apply")
) ++ Seq(
ProblemFilters.exclude[MissingClassProblem](
"org.apache.spark.shuffle.FileShuffleBlockResolver$ShuffleFileGroup")
) ++ Seq(
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.ml.regression.LeastSquaresAggregator.add"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.ml.regression.LeastSquaresCostFun.this"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.sql.SQLContext.clearLastInstantiatedContext"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.sql.SQLContext.setLastInstantiatedContext"),
ProblemFilters.exclude[MissingClassProblem](
"org.apache.spark.sql.SQLContext$SQLSession"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.sql.SQLContext.detachSession"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.sql.SQLContext.tlSession"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.sql.SQLContext.defaultSession"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.sql.SQLContext.currentSession"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.sql.SQLContext.openSession"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.sql.SQLContext.setSession"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.sql.SQLContext.createSession")
) ++ Seq(
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.SparkContext.preferredNodeLocationData_=")
)
case v if v.startsWith("1.5") =>
Seq(
MimaBuild.excludeSparkPackage("network"),
MimaBuild.excludeSparkPackage("deploy"),
// These are needed if checking against the sbt build, since they are part of
// the maven-generated artifacts in 1.3.
excludePackage("org.spark-project.jetty"),
MimaBuild.excludeSparkPackage("unused"),
// JavaRDDLike is not meant to be extended by user programs
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.api.java.JavaRDDLike.partitioner"),
// Modification of private static method
ProblemFilters.exclude[IncompatibleMethTypeProblem](
"org.apache.spark.streaming.kafka.KafkaUtils.org$apache$spark$streaming$kafka$KafkaUtils$$leadersForRanges"),
// Mima false positive (was a private[spark] class)
ProblemFilters.exclude[MissingClassProblem](
"org.apache.spark.util.collection.PairIterator"),
// Removing a testing method from a private class
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.streaming.kafka.KafkaTestUtils.waitUntilLeaderOffset"),
// While private MiMa is still not happy about the changes,
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.ml.regression.LeastSquaresAggregator.this"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.ml.regression.LeastSquaresCostFun.this"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.ml.classification.LogisticCostFun.this"),
// SQL execution is considered private.
excludePackage("org.apache.spark.sql.execution"),
// The old JSON RDD is removed in favor of streaming Jackson
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.json.JsonRDD$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.json.JsonRDD"),
// local function inside a method
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.sql.SQLContext.org$apache$spark$sql$SQLContext$$needsConversion$1"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.sql.UDFRegistration.org$apache$spark$sql$UDFRegistration$$builder$24")
) ++ Seq(
// SPARK-8479 Add numNonzeros and numActives to Matrix.
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.linalg.Matrix.numNonzeros"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.linalg.Matrix.numActives")
) ++ Seq(
// SPARK-8914 Remove RDDApi
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.RDDApi")
) ++ Seq(
// SPARK-7292 Provide operator to truncate lineage cheaply
ProblemFilters.exclude[AbstractClassProblem](
"org.apache.spark.rdd.RDDCheckpointData"),
ProblemFilters.exclude[AbstractClassProblem](
"org.apache.spark.rdd.CheckpointRDD")
) ++ Seq(
// SPARK-8701 Add input metadata in the batch page.
ProblemFilters.exclude[MissingClassProblem](
"org.apache.spark.streaming.scheduler.InputInfo$"),
ProblemFilters.exclude[MissingClassProblem](
"org.apache.spark.streaming.scheduler.InputInfo")
) ++ Seq(
// SPARK-6797 Support YARN modes for SparkR
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.api.r.PairwiseRRDD.this"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.api.r.RRDD.createRWorker"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.api.r.RRDD.this"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.api.r.StringRRDD.this"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.api.r.BaseRRDD.this")
) ++ Seq(
// SPARK-7422 add argmax for sparse vectors
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.linalg.Vector.argmax")
) ++ Seq(
// SPARK-8906 Move all internal data source classes into execution.datasources
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.ResolvedDataSource"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.PreInsertCastAndRename$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.CreateTableUsingAsSelect$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.InsertIntoDataSource$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.SqlNewHadoopPartition"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.PartitioningUtils$PartitionValues$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.DefaultWriterContainer"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.PartitioningUtils$PartitionValues"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.RefreshTable$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.CreateTempTableUsing$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.PartitionSpec"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.DynamicPartitionWriterContainer"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.CreateTableUsingAsSelect"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.SqlNewHadoopRDD$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.DescribeCommand$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.PartitioningUtils$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.SqlNewHadoopRDD"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.PreInsertCastAndRename"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.Partition$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.LogicalRelation$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.PartitioningUtils"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.LogicalRelation"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.Partition"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.BaseWriterContainer"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.PreWriteCheck"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.CreateTableUsing"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.RefreshTable"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.SqlNewHadoopRDD$NewHadoopMapPartitionsWithSplitRDD"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.DataSourceStrategy$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.CreateTempTableUsing"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.CreateTempTableUsingAsSelect$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.CreateTempTableUsingAsSelect"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.CreateTableUsing$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.ResolvedDataSource$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.PreWriteCheck$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.InsertIntoDataSource"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.InsertIntoHadoopFsRelation"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.DDLParser"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.CaseInsensitiveMap"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.InsertIntoHadoopFsRelation$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.DataSourceStrategy"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.SqlNewHadoopRDD$NewHadoopMapPartitionsWithSplitRDD$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.PartitionSpec$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.DescribeCommand"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.sources.DDLException"),
// SPARK-9763 Minimize exposure of internal SQL classes
excludePackage("org.apache.spark.sql.parquet"),
excludePackage("org.apache.spark.sql.json"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.jdbc.JDBCRDD$DecimalConversion$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.jdbc.JDBCPartition"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.jdbc.JdbcUtils$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.jdbc.JDBCRDD$DecimalConversion"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.jdbc.JDBCPartitioningInfo$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.jdbc.JDBCPartition$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.jdbc.package"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.jdbc.JDBCRDD$JDBCConversion"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.jdbc.JDBCRDD$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.jdbc.package$DriverWrapper"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.jdbc.JDBCRDD"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.jdbc.JDBCPartitioningInfo"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.jdbc.JdbcUtils"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.jdbc.DefaultSource"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.jdbc.JDBCRelation$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.jdbc.package$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.jdbc.JDBCRelation")
) ++ Seq(
// SPARK-4751 Dynamic allocation for standalone mode
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.SparkContext.supportDynamicAllocation")
) ++ Seq(
// SPARK-9580: Remove SQL test singletons
ProblemFilters.exclude[MissingClassProblem](
"org.apache.spark.sql.test.LocalSQLContext$SQLSession"),
ProblemFilters.exclude[MissingClassProblem](
"org.apache.spark.sql.test.LocalSQLContext"),
ProblemFilters.exclude[MissingClassProblem](
"org.apache.spark.sql.test.TestSQLContext"),
ProblemFilters.exclude[MissingClassProblem](
"org.apache.spark.sql.test.TestSQLContext$")
) ++ Seq(
// SPARK-9704 Made ProbabilisticClassifier, Identifiable, VectorUDT public APIs
ProblemFilters.exclude[IncompatibleResultTypeProblem](
"org.apache.spark.mllib.linalg.VectorUDT.serialize")
) ++ Seq(
// SPARK-10381 Fix types / units in private AskPermissionToCommitOutput RPC message.
// This class is marked as `private` but MiMa still seems to be confused by the change.
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.scheduler.AskPermissionToCommitOutput.task"),
ProblemFilters.exclude[IncompatibleResultTypeProblem](
"org.apache.spark.scheduler.AskPermissionToCommitOutput.copy$default$2"),
ProblemFilters.exclude[IncompatibleMethTypeProblem](
"org.apache.spark.scheduler.AskPermissionToCommitOutput.copy"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.scheduler.AskPermissionToCommitOutput.taskAttempt"),
ProblemFilters.exclude[IncompatibleResultTypeProblem](
"org.apache.spark.scheduler.AskPermissionToCommitOutput.copy$default$3"),
ProblemFilters.exclude[IncompatibleMethTypeProblem](
"org.apache.spark.scheduler.AskPermissionToCommitOutput.this"),
ProblemFilters.exclude[IncompatibleMethTypeProblem](
"org.apache.spark.scheduler.AskPermissionToCommitOutput.apply")
)
case v if v.startsWith("1.4") =>
Seq(
MimaBuild.excludeSparkPackage("deploy"),
MimaBuild.excludeSparkPackage("ml"),
// SPARK-7910 Adding a method to get the partioner to JavaRDD,
ProblemFilters.exclude[MissingMethodProblem]("org.apache.spark.api.java.JavaRDDLike.partitioner"),
// SPARK-5922 Adding a generalized diff(other: RDD[(VertexId, VD)]) to VertexRDD
ProblemFilters.exclude[MissingMethodProblem]("org.apache.spark.graphx.VertexRDD.diff"),
// These are needed if checking against the sbt build, since they are part of
// the maven-generated artifacts in 1.3.
excludePackage("org.spark-project.jetty"),
MimaBuild.excludeSparkPackage("unused"),
ProblemFilters.exclude[MissingClassProblem]("com.google.common.base.Optional"),
ProblemFilters.exclude[IncompatibleResultTypeProblem](
"org.apache.spark.rdd.JdbcRDD.compute"),
ProblemFilters.exclude[IncompatibleResultTypeProblem](
"org.apache.spark.broadcast.HttpBroadcastFactory.newBroadcast"),
ProblemFilters.exclude[IncompatibleResultTypeProblem](
"org.apache.spark.broadcast.TorrentBroadcastFactory.newBroadcast"),
ProblemFilters.exclude[MissingClassProblem](
"org.apache.spark.scheduler.OutputCommitCoordinator$OutputCommitCoordinatorEndpoint")
) ++ Seq(
// SPARK-4655 - Making Stage an Abstract class broke binary compatility even though
// the stage class is defined as private[spark]
ProblemFilters.exclude[AbstractClassProblem]("org.apache.spark.scheduler.Stage")
) ++ Seq(
// SPARK-6510 Add a Graph#minus method acting as Set#difference
ProblemFilters.exclude[MissingMethodProblem]("org.apache.spark.graphx.VertexRDD.minus")
) ++ Seq(
// SPARK-6492 Fix deadlock in SparkContext.stop()
ProblemFilters.exclude[MissingMethodProblem]("org.apache.spark.SparkContext.org$" +
"apache$spark$SparkContext$$SPARK_CONTEXT_CONSTRUCTOR_LOCK")
)++ Seq(
// SPARK-6693 add tostring with max lines and width for matrix
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.linalg.Matrix.toString")
)++ Seq(
// SPARK-6703 Add getOrCreate method to SparkContext
ProblemFilters.exclude[IncompatibleResultTypeProblem]
("org.apache.spark.SparkContext.org$apache$spark$SparkContext$$activeContext")
)++ Seq(
// SPARK-7090 Introduce LDAOptimizer to LDA to further improve extensibility
ProblemFilters.exclude[MissingClassProblem](
"org.apache.spark.mllib.clustering.LDA$EMOptimizer")
) ++ Seq(
// SPARK-6756 add toSparse, toDense, numActives, numNonzeros, and compressed to Vector
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.linalg.Vector.compressed"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.linalg.Vector.toDense"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.linalg.Vector.numNonzeros"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.linalg.Vector.toSparse"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.linalg.Vector.numActives"),
// SPARK-7681 add SparseVector support for gemv
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.linalg.Matrix.multiply"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.linalg.DenseMatrix.multiply"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.linalg.SparseMatrix.multiply")
) ++ Seq(
// Execution should never be included as its always internal.
MimaBuild.excludeSparkPackage("sql.execution"),
// This `protected[sql]` method was removed in 1.3.1
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.sql.SQLContext.checkAnalysis"),
// These `private[sql]` class were removed in 1.4.0:
ProblemFilters.exclude[MissingClassProblem](
"org.apache.spark.sql.execution.AddExchange"),
ProblemFilters.exclude[MissingClassProblem](
"org.apache.spark.sql.execution.AddExchange$"),
ProblemFilters.exclude[MissingClassProblem](
"org.apache.spark.sql.parquet.PartitionSpec"),
ProblemFilters.exclude[MissingClassProblem](
"org.apache.spark.sql.parquet.PartitionSpec$"),
ProblemFilters.exclude[MissingClassProblem](
"org.apache.spark.sql.parquet.Partition"),
ProblemFilters.exclude[MissingClassProblem](
"org.apache.spark.sql.parquet.Partition$"),
ProblemFilters.exclude[MissingClassProblem](
"org.apache.spark.sql.parquet.ParquetRelation2$PartitionValues"),
ProblemFilters.exclude[MissingClassProblem](
"org.apache.spark.sql.parquet.ParquetRelation2$PartitionValues$"),
ProblemFilters.exclude[MissingClassProblem](
"org.apache.spark.sql.parquet.ParquetRelation2"),
ProblemFilters.exclude[MissingClassProblem](
"org.apache.spark.sql.parquet.ParquetRelation2$"),
ProblemFilters.exclude[MissingClassProblem](
"org.apache.spark.sql.parquet.ParquetRelation2$MetadataCache"),
// These test support classes were moved out of src/main and into src/test:
ProblemFilters.exclude[MissingClassProblem](
"org.apache.spark.sql.parquet.ParquetTestData"),
ProblemFilters.exclude[MissingClassProblem](
"org.apache.spark.sql.parquet.ParquetTestData$"),
ProblemFilters.exclude[MissingClassProblem](
"org.apache.spark.sql.parquet.TestGroupWriteSupport"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.CachedData"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.CachedData$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.CacheManager"),
// TODO: Remove the following rule once ParquetTest has been moved to src/test.
ProblemFilters.exclude[MissingClassProblem](
"org.apache.spark.sql.parquet.ParquetTest")
) ++ Seq(
// SPARK-7530 Added StreamingContext.getState()
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.streaming.StreamingContext.state_=")
) ++ Seq(
// SPARK-7081 changed ShuffleWriter from a trait to an abstract class and removed some
// unnecessary type bounds in order to fix some compiler warnings that occurred when
// implementing this interface in Java. Note that ShuffleWriter is private[spark].
ProblemFilters.exclude[IncompatibleTemplateDefProblem](
"org.apache.spark.shuffle.ShuffleWriter")
) ++ Seq(
// SPARK-6888 make jdbc driver handling user definable
// This patch renames some classes to API friendly names.
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.jdbc.DriverQuirks$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.jdbc.DriverQuirks"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.jdbc.PostgresQuirks"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.jdbc.NoQuirks"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.jdbc.MySQLQuirks")
)
case v if v.startsWith("1.3") =>
Seq(
MimaBuild.excludeSparkPackage("deploy"),
MimaBuild.excludeSparkPackage("ml"),
// These are needed if checking against the sbt build, since they are part of
// the maven-generated artifacts in the 1.2 build.
MimaBuild.excludeSparkPackage("unused"),
ProblemFilters.exclude[MissingClassProblem]("com.google.common.base.Optional")
) ++ Seq(
// SPARK-2321
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.SparkStageInfoImpl.this"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.SparkStageInfo.submissionTime")
) ++ Seq(
// SPARK-4614
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.linalg.Matrices.randn"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.linalg.Matrices.rand")
) ++ Seq(
// SPARK-5321
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.linalg.SparseMatrix.transposeMultiply"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.linalg.Matrix.transpose"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.linalg.DenseMatrix.transposeMultiply"),
ProblemFilters.exclude[MissingMethodProblem]("org.apache.spark.mllib.linalg.Matrix." +
"org$apache$spark$mllib$linalg$Matrix$_setter_$isTransposed_="),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.linalg.Matrix.isTransposed"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.linalg.Matrix.foreachActive")
) ++ Seq(
// SPARK-5540
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.recommendation.ALS.solveLeastSquares"),
// SPARK-5536
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$^dateFeatures"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$^dateBlock")
) ++ Seq(
// SPARK-3325
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.streaming.api.java.JavaDStreamLike.print"),
// SPARK-2757
ProblemFilters.exclude[IncompatibleResultTypeProblem](
"org.apache.spark.streaming.flume.sink.SparkAvroCallbackHandler." +
"removeAndGetProcessor")
) ++ Seq(
// SPARK-5123 (SparkSQL data type change) - alpha component only
ProblemFilters.exclude[IncompatibleResultTypeProblem](
"org.apache.spark.ml.feature.HashingTF.outputDataType"),
ProblemFilters.exclude[IncompatibleResultTypeProblem](
"org.apache.spark.ml.feature.Tokenizer.outputDataType"),
ProblemFilters.exclude[IncompatibleMethTypeProblem](
"org.apache.spark.ml.feature.Tokenizer.validateInputType"),
ProblemFilters.exclude[IncompatibleMethTypeProblem](
"org.apache.spark.ml.classification.LogisticRegressionModel.validateAndTransformSchema"),
ProblemFilters.exclude[IncompatibleMethTypeProblem](
"org.apache.spark.ml.classification.LogisticRegression.validateAndTransformSchema")
) ++ Seq(
// SPARK-4014
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.TaskContext.taskAttemptId"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.TaskContext.attemptNumber")
) ++ Seq(
// SPARK-5166 Spark SQL API stabilization
ProblemFilters.exclude[IncompatibleMethTypeProblem]("org.apache.spark.ml.Transformer.transform"),
ProblemFilters.exclude[IncompatibleMethTypeProblem]("org.apache.spark.ml.Estimator.fit"),
ProblemFilters.exclude[MissingMethodProblem]("org.apache.spark.ml.Transformer.transform"),
ProblemFilters.exclude[IncompatibleMethTypeProblem]("org.apache.spark.ml.Pipeline.fit"),
ProblemFilters.exclude[IncompatibleMethTypeProblem]("org.apache.spark.ml.PipelineModel.transform"),
ProblemFilters.exclude[MissingMethodProblem]("org.apache.spark.ml.Estimator.fit"),
ProblemFilters.exclude[IncompatibleMethTypeProblem]("org.apache.spark.ml.Evaluator.evaluate"),
ProblemFilters.exclude[MissingMethodProblem]("org.apache.spark.ml.Evaluator.evaluate"),
ProblemFilters.exclude[IncompatibleMethTypeProblem]("org.apache.spark.ml.tuning.CrossValidator.fit"),
ProblemFilters.exclude[IncompatibleMethTypeProblem]("org.apache.spark.ml.tuning.CrossValidatorModel.transform"),
ProblemFilters.exclude[IncompatibleMethTypeProblem]("org.apache.spark.ml.feature.StandardScaler.fit"),
ProblemFilters.exclude[IncompatibleMethTypeProblem]("org.apache.spark.ml.feature.StandardScalerModel.transform"),
ProblemFilters.exclude[IncompatibleMethTypeProblem]("org.apache.spark.ml.classification.LogisticRegressionModel.transform"),
ProblemFilters.exclude[IncompatibleMethTypeProblem]("org.apache.spark.ml.classification.LogisticRegression.fit"),
ProblemFilters.exclude[IncompatibleMethTypeProblem]("org.apache.spark.ml.evaluation.BinaryClassificationEvaluator.evaluate")
) ++ Seq(
// SPARK-5270
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.api.java.JavaRDDLike.isEmpty")
) ++ Seq(
// SPARK-5430
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.api.java.JavaRDDLike.treeReduce"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.api.java.JavaRDDLike.treeAggregate")
) ++ Seq(
// SPARK-5297 Java FileStream do not work with custom key/values
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.streaming.api.java.JavaStreamingContext.fileStream")
) ++ Seq(
// SPARK-5315 Spark Streaming Java API returns Scala DStream
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.streaming.api.java.JavaDStreamLike.reduceByWindow")
) ++ Seq(
// SPARK-5461 Graph should have isCheckpointed, getCheckpointFiles methods
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.graphx.Graph.getCheckpointFiles"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.graphx.Graph.isCheckpointed")
) ++ Seq(
// SPARK-4789 Standardize ML Prediction APIs
ProblemFilters.exclude[MissingTypesProblem]("org.apache.spark.mllib.linalg.VectorUDT"),
ProblemFilters.exclude[IncompatibleResultTypeProblem]("org.apache.spark.mllib.linalg.VectorUDT.serialize"),
ProblemFilters.exclude[IncompatibleResultTypeProblem]("org.apache.spark.mllib.linalg.VectorUDT.sqlType")
) ++ Seq(
// SPARK-5814
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$$wrapDoubleArray"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$$fillFullMatrix"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$$iterations"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$$makeOutLinkBlock"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$$computeYtY"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$$makeLinkRDDs"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$$alpha"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$$randomFactor"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$$makeInLinkBlock"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$$dspr"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$$lambda"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$$implicitPrefs"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$$rank")
) ++ Seq(
// SPARK-4682
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.RealClock"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.Clock"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.TestClock")
) ++ Seq(
// SPARK-5922 Adding a generalized diff(other: RDD[(VertexId, VD)]) to VertexRDD
ProblemFilters.exclude[MissingMethodProblem]("org.apache.spark.graphx.VertexRDD.diff")
)
case v if v.startsWith("1.2") =>
Seq(
MimaBuild.excludeSparkPackage("deploy"),
MimaBuild.excludeSparkPackage("graphx")
) ++
MimaBuild.excludeSparkClass("mllib.linalg.Matrix") ++
MimaBuild.excludeSparkClass("mllib.linalg.Vector") ++
Seq(
ProblemFilters.exclude[IncompatibleTemplateDefProblem](
"org.apache.spark.scheduler.TaskLocation"),
// Added normL1 and normL2 to trait MultivariateStatisticalSummary
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.stat.MultivariateStatisticalSummary.normL1"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.stat.MultivariateStatisticalSummary.normL2"),
// MapStatus should be private[spark]
ProblemFilters.exclude[IncompatibleTemplateDefProblem](
"org.apache.spark.scheduler.MapStatus"),
ProblemFilters.exclude[MissingClassProblem](
"org.apache.spark.network.netty.PathResolver"),
ProblemFilters.exclude[MissingClassProblem](
"org.apache.spark.network.netty.client.BlockClientListener"),
// TaskContext was promoted to Abstract class
ProblemFilters.exclude[AbstractClassProblem](
"org.apache.spark.TaskContext"),
ProblemFilters.exclude[IncompatibleTemplateDefProblem](
"org.apache.spark.util.collection.SortDataFormat")
) ++ Seq(
// Adding new methods to the JavaRDDLike trait:
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.api.java.JavaRDDLike.takeAsync"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.api.java.JavaRDDLike.foreachPartitionAsync"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.api.java.JavaRDDLike.countAsync"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.api.java.JavaRDDLike.foreachAsync"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.api.java.JavaRDDLike.collectAsync")
) ++ Seq(
// SPARK-3822
ProblemFilters.exclude[IncompatibleResultTypeProblem](
"org.apache.spark.SparkContext.org$apache$spark$SparkContext$$createTaskScheduler")
) ++ Seq(
// SPARK-1209
ProblemFilters.exclude[MissingClassProblem](
"org.apache.hadoop.mapreduce.SparkHadoopMapReduceUtil"),
ProblemFilters.exclude[MissingClassProblem](
"org.apache.hadoop.mapred.SparkHadoopMapRedUtil"),
ProblemFilters.exclude[MissingTypesProblem](
"org.apache.spark.rdd.PairRDDFunctions")
) ++ Seq(
// SPARK-4062
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.streaming.kafka.KafkaReceiver#MessageHandler.this")
)
case v if v.startsWith("1.1") =>
Seq(
MimaBuild.excludeSparkPackage("deploy"),
MimaBuild.excludeSparkPackage("graphx")
) ++
Seq(
// Adding new method to JavaRDLike trait - we should probably mark this as a developer API.
ProblemFilters.exclude[MissingMethodProblem]("org.apache.spark.api.java.JavaRDDLike.partitions"),
// Should probably mark this as Experimental
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.api.java.JavaRDDLike.foreachAsync"),
// We made a mistake earlier (ed06500d3) in the Java API to use default parameter values
// for countApproxDistinct* functions, which does not work in Java. We later removed
// them, and use the following to tell Mima to not care about them.
ProblemFilters.exclude[IncompatibleResultTypeProblem](
"org.apache.spark.api.java.JavaPairRDD.countApproxDistinctByKey"),
ProblemFilters.exclude[IncompatibleResultTypeProblem](
"org.apache.spark.api.java.JavaPairRDD.countApproxDistinctByKey"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.api.java.JavaPairRDD.countApproxDistinct$default$1"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.api.java.JavaPairRDD.countApproxDistinctByKey$default$1"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.api.java.JavaRDD.countApproxDistinct$default$1"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.api.java.JavaRDDLike.countApproxDistinct$default$1"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.api.java.JavaDoubleRDD.countApproxDistinct$default$1"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.storage.DiskStore.getValues"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.storage.MemoryStore.Entry")
) ++
Seq(
// Serializer interface change. See SPARK-3045.
ProblemFilters.exclude[IncompatibleTemplateDefProblem](
"org.apache.spark.serializer.DeserializationStream"),
ProblemFilters.exclude[IncompatibleTemplateDefProblem](
"org.apache.spark.serializer.Serializer"),
ProblemFilters.exclude[IncompatibleTemplateDefProblem](
"org.apache.spark.serializer.SerializationStream"),
ProblemFilters.exclude[IncompatibleTemplateDefProblem](
"org.apache.spark.serializer.SerializerInstance")
)++
Seq(
// Renamed putValues -> putArray + putIterator
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.storage.MemoryStore.putValues"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.storage.DiskStore.putValues"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.storage.TachyonStore.putValues")
) ++
Seq(
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.streaming.flume.FlumeReceiver.this"),
ProblemFilters.exclude[IncompatibleMethTypeProblem](
"org.apache.spark.streaming.kafka.KafkaUtils.createStream"),
ProblemFilters.exclude[IncompatibleMethTypeProblem](
"org.apache.spark.streaming.kafka.KafkaReceiver.this")
) ++
Seq( // Ignore some private methods in ALS.
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$^dateFeatures"),
ProblemFilters.exclude[MissingMethodProblem]( // The only public constructor is the one without arguments.
"org.apache.spark.mllib.recommendation.ALS.this"),
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$$<init>$default$7"),
ProblemFilters.exclude[IncompatibleMethTypeProblem](
"org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$^dateFeatures")
) ++
MimaBuild.excludeSparkClass("mllib.linalg.distributed.ColumnStatisticsAggregator") ++
MimaBuild.excludeSparkClass("rdd.ZippedRDD") ++
MimaBuild.excludeSparkClass("rdd.ZippedPartition") ++
MimaBuild.excludeSparkClass("util.SerializableHyperLogLog") ++
MimaBuild.excludeSparkClass("storage.Values") ++
MimaBuild.excludeSparkClass("storage.Entry") ++
MimaBuild.excludeSparkClass("storage.MemoryStore$Entry") ++
// Class was missing "@DeveloperApi" annotation in 1.0.
MimaBuild.excludeSparkClass("scheduler.SparkListenerApplicationStart") ++
Seq(
ProblemFilters.exclude[IncompatibleMethTypeProblem](
"org.apache.spark.mllib.tree.impurity.Gini.calculate"),
ProblemFilters.exclude[IncompatibleMethTypeProblem](
"org.apache.spark.mllib.tree.impurity.Entropy.calculate"),
ProblemFilters.exclude[IncompatibleMethTypeProblem](
"org.apache.spark.mllib.tree.impurity.Variance.calculate")
) ++
Seq( // Package-private classes removed in SPARK-2341
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.mllib.util.BinaryLabelParser"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.mllib.util.BinaryLabelParser$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.mllib.util.LabelParser"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.mllib.util.LabelParser$"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.mllib.util.MulticlassLabelParser"),
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.mllib.util.MulticlassLabelParser$")
) ++
Seq( // package-private classes removed in MLlib
ProblemFilters.exclude[MissingMethodProblem](
"org.apache.spark.mllib.regression.GeneralizedLinearAlgorithm.org$apache$spark$mllib$regression$GeneralizedLinearAlgorithm$$prependOne")
) ++
Seq( // new Vector methods in MLlib (binary compatible assuming users do not implement Vector)
ProblemFilters.exclude[MissingMethodProblem]("org.apache.spark.mllib.linalg.Vector.copy")
) ++
Seq( // synthetic methods generated in LabeledPoint
ProblemFilters.exclude[MissingTypesProblem]("org.apache.spark.mllib.regression.LabeledPoint$"),
ProblemFilters.exclude[IncompatibleMethTypeProblem]("org.apache.spark.mllib.regression.LabeledPoint.apply"),
ProblemFilters.exclude[MissingMethodProblem]("org.apache.spark.mllib.regression.LabeledPoint.toString")
) ++
Seq ( // Scala 2.11 compatibility fix
ProblemFilters.exclude[MissingMethodProblem]("org.apache.spark.streaming.StreamingContext.<init>$default$2")
)
case v if v.startsWith("1.0") =>
Seq(
MimaBuild.excludeSparkPackage("api.java"),
MimaBuild.excludeSparkPackage("mllib"),
MimaBuild.excludeSparkPackage("streaming")
) ++
MimaBuild.excludeSparkClass("rdd.ClassTags") ++
MimaBuild.excludeSparkClass("util.XORShiftRandom") ++
MimaBuild.excludeSparkClass("graphx.EdgeRDD") ++
MimaBuild.excludeSparkClass("graphx.VertexRDD") ++
MimaBuild.excludeSparkClass("graphx.impl.GraphImpl") ++
MimaBuild.excludeSparkClass("graphx.impl.RoutingTable") ++
MimaBuild.excludeSparkClass("graphx.util.collection.PrimitiveKeyOpenHashMap") ++
MimaBuild.excludeSparkClass("graphx.util.collection.GraphXPrimitiveKeyOpenHashMap") ++
MimaBuild.excludeSparkClass("mllib.recommendation.MFDataGenerator") ++
MimaBuild.excludeSparkClass("mllib.optimization.SquaredGradient") ++
MimaBuild.excludeSparkClass("mllib.regression.RidgeRegressionWithSGD") ++
MimaBuild.excludeSparkClass("mllib.regression.LassoWithSGD") ++
MimaBuild.excludeSparkClass("mllib.regression.LinearRegressionWithSGD")
case _ => Seq()
}
}