-
Notifications
You must be signed in to change notification settings - Fork 165
/
mnist.c
250 lines (170 loc) · 7.3 KB
/
mnist.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
/* Copyright 2021-2022. Uecker Lab, University Medical Center Goettingen.
* All rights reserved. Use of this source code is governed by
* a BSD-style license which can be found in the LICENSE file.
*/
#include <complex.h>
#include "grecon/opt_iter6.h"
#include "grecon/losses.h"
#include "grecon/network.h"
#include "num/multind.h"
#include "num/flpmath.h"
#include "num/init.h"
#include "iter/iter6.h"
#include "iter/italgos.h"
#include "iter/batch_gen.h"
#include "nn/weights.h"
#ifdef USE_CUDA
#include "num/gpuops.h"
#endif
#include "misc/debug.h"
#include "misc/opts.h"
#include "misc/mmio.h"
#include "misc/misc.h"
#include "misc/types.h"
#include "linops/someops.h"
#include "nlops/nlop.h"
#include "nlops/cast.h"
#include "nn/nn.h"
#include "nn/chain.h"
#include "nn/layers.h"
#include "nn/layers_nn.h"
#include "nn/activation.h"
#include "nn/activation_nn.h"
#include "nn/losses.h"
#include "networks/nnet.h"
#include "networks/unet.h"
#include "networks/losses.h"
#ifndef DIMS
#define DIMS 16
#endif
#ifndef CFL_SIZE
#define CFL_SIZE sizeof(complex float)
#endif
/**
* Generate nn-struct representing neural network for MNIST dataset
*
* @param odims output dimensions { Classification, Batchsize }
* @param idims input dimensions { X, Y, Batchsize }
* @param status Network status, i.e. training or inference (different behavior of dropot layer)
*/
static nn_t network_mnist_create(const long odims[2], const long idims[3], enum NETWORK_STATUS status)
{
assert(10 == odims[0]); // 10 classes
assert(idims[2] == odims[1]); // batch size of input and output equals
long dims[5] = { 1, idims[0], idims[1], 1, idims[2] }; // input dimensions in the channel NHWC format, i.e. { Channels, X, Y, Z, Batch }
bool nhwc = true; // we use NHWC layout
long kernel_size[] = { 3, 3, 1 }; // size of 3D convolution kernel
long strides[] = { 1, 1, 1 };
long dilation[] = { 1, 1, 1 };
int chan1 = 32;
int chan2 = 64;
int chan3 = 128;
int chan4 = 10;
const struct initializer_s* init = NULL; // fallback to default initializer
long pool_size[] = { 2, 2, 1 };
bool conv = false; // we usecross correlation not convolution, i.e. as usual in deep-learning the convolution kernels are not flipped
unsigned long bias_flag = MD_BIT(0); //bitmask to select dimensions of bias (channel dimension)
// we initialize the input with a reshaping operator
nn_t network = nn_from_nlop_F(nlop_from_linop(linop_reshape_create(5, dims, 3, idims))); // reshape input
// we append layers to the network, we always append to the single output with index "0, NULL" (c.f. src/nn/nn.h for indexing)
network = nn_append_convcorr_layer(network, 0, NULL, "conv_", chan1, kernel_size, conv, PAD_VALID, nhwc, strides, dilation, init);
network = nn_append_activation_bias(network, 0, NULL, "conv_bias_", ACT_RELU, bias_flag);
network = nn_append_convcorr_layer(network, 0, NULL, "conv_", chan2, kernel_size, conv, PAD_VALID, nhwc, strides, dilation, init);
network = nn_append_activation_bias(network, 0, NULL, "conv_bias_", ACT_RELU, bias_flag);
network = nn_append_maxpool_layer(network, 0, NULL, pool_size, PAD_VALID, true);
network = nn_append_flatten_layer(network, 0, NULL);
network = nn_append_dropout_layer(network, 0, NULL, 0.25, status);
network = nn_append_dense_layer(network, 0, NULL, "dense_", chan3, init);
network = nn_append_activation_bias(network, 0, NULL, "dense_bias_", ACT_RELU, bias_flag);
network = nn_append_dropout_layer(network, 0, NULL, 0.5, status);
network = nn_append_dense_layer(network, 0, NULL, "dense_", chan4, init);
network = nn_append_activation_bias(network, 0, NULL, "dense_bias_", ACT_SOFTMAX, bias_flag);
debug_printf(DP_INFO, "MNIST-Network created:");
nn_debug(DP_INFO, network);
return network;
}
static const char help_str[] = "Trains or applies a MNIST network.\nThis network is to demonstrate how a neural network can be implemented in BART.";
int main_mnist(int argc, char* argv[argc])
{
bool apply = false;
bool train = false;
const struct opt_s opts[] = {
OPTL_SET('a', "apply", &apply, "apply nnet"),
OPTL_SET('t', "train", &train, "trains network"),
OPTL_SET('g', "gpu", &(bart_use_gpu), "run on gpu"),
};
const char* filename_in;
const char* filename_weights;
const char* filename_out;
struct arg_s args[] = {
ARG_INFILE(true, &(filename_in), "input"),
ARG_INOUTFILE(true, &filename_weights, "weights"),
ARG_INOUTFILE(true, &(filename_out), "ref/output"),
};
cmdline(&argc, argv, ARRAY_SIZE(args), args, help_str, ARRAY_SIZE(opts), opts);
num_init_gpu_support();
if (apply && train)
error("Either train or apply!\n");
int NI = 3;
int NO = 2;
long dims_in[NI];
complex float* in = load_cfl(filename_in, NI, dims_in);
int Nb = MIN(128, (int)dims_in[NI - 1]);
if (train) {
long dims_out[NO];
complex float* out = load_cfl(filename_out, NO, dims_out);
long bdims_in[] = { dims_in[0], dims_in[1], Nb };
long bdims_out[] = { dims_out[0], Nb };
int Nt = (int)dims_out[1]; //dataset size
assert(Nt == dims_in[2]);
nn_t net = network_mnist_create(bdims_out, bdims_in, STAT_TRAIN);
nn_t loss = nn_from_nlop_F(nlop_cce_create(2, bdims_out, ~MD_BIT(0)));
nn_t train_op = nn_chain2_FF(net, 0, NULL, loss, 0, NULL);
train_op = nn_set_out_type_F(train_op, 0, NULL, OUT_OPTIMIZE);
nn_weights_t weights = nn_weights_create_from_nn(train_op);
nn_init(train_op, weights);
if (bart_use_gpu)
move_gpu_nn_weights(weights);
const struct nlop_s* batch_generator = batch_gen_create(2, (int [2]){ NO, NI },
(const long*[2]){ bdims_out, bdims_in },
(const long*[2]){ dims_out, dims_in },
(const complex float*[2]){ out, in },
0, BATCH_GEN_SHUFFLE_DATA, 123);
//setup for iter algorithm
int II = nn_get_nr_in_args(train_op);
int OO = nn_get_nr_out_args(train_op);
float* src[II];
src[0] = NULL; //reference output -> allocated and filled by training algorithm/batch generator
src[1] = NULL; //reference input -> allocated and filled by training algorithm/batch generator
for (int i = 0; i < weights->N; i++)
src[i + 2] = (float*)weights->tensors[i];
enum IN_TYPE in_type[II];
enum OUT_TYPE out_type[OO];
nn_get_in_types(train_op, II, in_type);
nn_get_out_types(train_op, OO, out_type);
in_type[0] = IN_BATCH_GENERATOR;
in_type[1] = IN_BATCH_GENERATOR;
struct iter6_adadelta_conf train_conf = iter6_adadelta_conf_defaults;
iter6_adadelta(CAST_UP(&train_conf), nn_get_nlop(train_op), II, in_type, NULL, src, OO, out_type, Nb, Nt / Nb, batch_generator, NULL);
dump_nn_weights(filename_weights, weights);
nn_weights_free(weights);
unmap_cfl(NO, dims_out, out);
}
if (apply) {
long dims_out[] = { 10, dims_in[2] };
complex float* out = create_cfl(filename_out, NO, dims_out);
nn_t net = network_mnist_create(dims_out, dims_in, STAT_TEST);
nn_weights_t weights = load_nn_weights(filename_weights);
if (bart_use_gpu)
move_gpu_nn_weights(weights);
net = nn_get_wo_weights_F(net, weights, false); //set inputs corresponding to weights to the loaded weights
nlop_generic_apply_sameplace(nn_get_nlop(net),
1, (int[1]){ 2 }, (const long*[1]){ dims_out }, (complex float* [1]){ out },
1, (int[1]){ 3 }, (const long*[1]){ dims_in }, (const complex float*[1]){ in },
weights->tensors[0]);
unmap_cfl(NO, dims_out, out);
nn_weights_free(weights);
}
unmap_cfl(NI, dims_in, in);
return 0;
}