forked from Z3Prover/z3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnlqsat.cpp
966 lines (857 loc) · 33.9 KB
/
nlqsat.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
/*++
Copyright (c) 2015 Microsoft Corporation
Module Name:
nlqsat.cpp
Abstract:
Quantifier Satisfiability Solver for nlsat
Author:
Nikolaj Bjorner (nbjorner) 2015-10-17
Revision History:
--*/
#include "util/uint_set.h"
#include "util/scoped_ptr_vector.h"
#include "ast/expr2var.h"
#include "ast/ast_util.h"
#include "ast/rewriter/expr_safe_replace.h"
#include "ast/ast_pp.h"
#include "ast/for_each_expr.h"
#include "ast/rewriter/rewriter.h"
#include "ast/rewriter/th_rewriter.h"
#include "ast/rewriter/rewriter_def.h"
#include "ast/rewriter/quant_hoist.h"
#include "qe/nlqsat.h"
#include "qe/qsat.h"
#include "nlsat/nlsat_solver.h"
#include "nlsat/nlsat_explain.h"
#include "nlsat/nlsat_assignment.h"
#include "nlsat/tactic/goal2nlsat.h"
#include "tactic/core/tseitin_cnf_tactic.h"
namespace qe {
enum qsat_mode_t {
qsat_t,
elim_t
};
class nlqsat : public tactic {
typedef unsigned_vector assumption_vector;
typedef nlsat::scoped_literal_vector clause;
struct stats {
unsigned m_num_rounds;
stats() { reset(); }
void reset() { memset(this, 0, sizeof(*this)); }
};
struct solver_state {
ast_manager& m;
params_ref m_params;
nlsat::solver m_solver;
nlsat::literal m_is_true;
nlsat::assignment m_rmodel;
svector<lbool> m_bmodel;
nlsat::assignment m_rmodel0;
svector<lbool> m_bmodel0;
bool m_valid_model;
vector<nlsat::var_vector> m_bound_rvars;
vector<svector<nlsat::bool_var> > m_bound_bvars;
scoped_ptr_vector<nlsat::scoped_literal_vector> m_preds;
svector<max_level> m_rvar2level;
u_map<max_level> m_bvar2level;
expr2var m_a2b, m_t2x;
u_map<expr*> m_b2a, m_x2t;
nlsat::literal_vector m_assumptions;
nlsat::literal_vector m_asms;
nlsat::literal_vector m_cached_asms;
unsigned_vector m_cached_asms_lim;
u_map<expr*> m_asm2fml;
solver_state(ast_manager& m, params_ref const& p):
m(m),
m_params(p),
m_solver(m.limit(), p, true),
m_rmodel(m_solver.am()),
m_rmodel0(m_solver.am()),
m_valid_model(false),
m_a2b(m),
m_t2x(m)
{}
~solver_state() {
reset();
}
void g2s(goal const& g) {
goal2nlsat gs;
gs(g, m_params, m_solver, m_a2b, m_t2x);
}
void init_expr2var(vector<app_ref_vector> const& qvars) {
for (app_ref_vector const& qvs : qvars) {
init_expr2var(qvs);
}
}
void init_expr2var(app_ref_vector const& qvars) {
for (app* v : qvars) {
if (m.is_bool(v)) {
nlsat::bool_var b = m_solver.mk_bool_var();
m_solver.inc_ref(b);
m_a2b.insert(v, b);
}
else {
// TODO: assert it is of type Real.
m_t2x.insert(v, m_solver.mk_var(false));
}
}
}
void init_var2expr() {
for (auto const& kv : m_t2x) {
m_x2t.insert(kv.m_value, kv.m_key);
}
for (auto const& kv : m_a2b) {
m_b2a.insert(kv.m_value, kv.m_key);
}
}
void save_model(bool is_exists) {
svector<nlsat::bool_var> bvars;
for (auto const& kv : m_bvar2level) {
bvars.push_back(kv.m_key);
}
m_solver.get_rvalues(m_rmodel);
m_solver.get_bvalues(bvars, m_bmodel);
m_valid_model = true;
if (is_exists) {
m_rmodel0.copy(m_rmodel);
m_bmodel0.reset();
m_bmodel0.append(m_bmodel);
}
}
void unsave_model() {
SASSERT(m_valid_model);
m_solver.set_rvalues(m_rmodel);
m_solver.set_bvalues(m_bmodel);
}
void clear_model() {
m_valid_model = false;
m_rmodel.reset();
m_bmodel.reset();
m_solver.set_rvalues(m_rmodel);
}
void add_assumption_literal(clause& clause, expr* fml) {
nlsat::bool_var b = m_solver.mk_bool_var();
clause.push_back(nlsat::literal(b, true));
m_assumptions.push_back(nlsat::literal(b, false));
m_solver.inc_ref(b);
m_asm2fml.insert(b, fml);
m_bvar2level.insert(b, max_level());
}
expr_ref clause2fml(nlsat::scoped_literal_vector const& clause) {
expr_ref_vector fmls(m);
expr_ref fml(m);
expr* t;
nlsat2goal n2g(m);
for (nlsat::literal l : clause) {
if (m_asm2fml.find(l.var(), t)) {
fml = t;
if (l.sign()) {
fml = push_not(fml);
}
SASSERT(l.sign());
fmls.push_back(fml);
}
else {
fmls.push_back(n2g(m_solver, m_b2a, m_x2t, l));
}
}
fml = mk_or(fmls);
return fml;
}
void add_literal(nlsat::literal_vector& lits, nlsat::literal l) {
lbool r = m_solver.value(l);
switch (r) {
case l_true:
lits.push_back(l);
break;
case l_false:
lits.push_back(~l);
break;
default:
lits.push_back(l);
break;
}
}
void display(std::ostream& out) {
out << "level " << level() << "\n";
display_preds(out);
display_assumptions(out);
m_solver.display(out << "solver:\n");
}
void display_assumptions(std::ostream& out) {
m_solver.display(out << "assumptions: ", m_asms.size(), m_asms.data());
out << "\n";
}
void display_preds(std::ostream& out) {
for (unsigned i = 0; i < m_preds.size(); ++i) {
m_solver.display(out << i << ": ", m_preds[i]->size(), m_preds[i]->data());
out << "\n";
}
}
unsigned level() const {
return m_cached_asms_lim.size();
}
void reset() {
m_asms.reset();
m_cached_asms.reset();
m_cached_asms_lim.reset();
m_is_true = nlsat::null_literal;
m_rmodel.reset();
m_valid_model = false;
m_bound_rvars.reset();
m_bound_bvars.reset();
m_preds.reset();
for (auto const& kv : m_bvar2level) {
m_solver.dec_ref(kv.m_key);
}
m_rvar2level.reset();
m_bvar2level.reset();
m_t2x.reset();
m_a2b.reset();
m_b2a.reset();
m_x2t.reset();
m_assumptions.reset();
m_asm2fml.reset();
}
};
ast_manager& m;
solver_state s;
qsat_mode_t m_mode;
params_ref m_params;
tactic_ref m_nftactic;
stats m_stats;
statistics m_st;
obj_hashtable<expr> m_free_vars;
expr_ref_vector m_answer;
expr_safe_replace m_answer_simplify;
expr_ref_vector m_trail;
ref<generic_model_converter> m_div_mc;
lbool check_sat() {
while (true) {
++m_stats.m_num_rounds;
check_cancel();
init_assumptions();
lbool res = s.m_solver.check(s.m_asms);
TRACE("qe", s.display(tout << res << "\n"); );
switch (res) {
case l_true:
s.save_model(is_exists(level()));
push();
break;
case l_false:
if (0 == level()) return l_false;
if (1 == level() && m_mode == qsat_t) return l_true;
project();
break;
case l_undef:
return res;
}
}
return l_undef;
}
void init_assumptions() {
unsigned lvl = level();
s.m_asms.reset();
s.m_asms.push_back(is_exists()?s.m_is_true:~s.m_is_true);
s.m_asms.append(s.m_assumptions);
TRACE("qe", tout << "model valid: " << s.m_valid_model << " level: " << lvl << " ";
s.display_assumptions(tout);
s.m_solver.display(tout););
if (!s.m_valid_model) {
s.m_asms.append(s.m_cached_asms);
return;
}
s.unsave_model();
if (lvl == 0) {
SASSERT(s.m_cached_asms.empty());
return;
}
if (lvl <= s.m_preds.size()) {
for (unsigned j = 0; j < s.m_preds[lvl - 1]->size(); ++j) {
s.add_literal(s.m_cached_asms, (*s.m_preds[lvl - 1])[j]);
}
}
s.m_asms.append(s.m_cached_asms);
for (unsigned i = lvl + 1; i < s.m_preds.size(); i += 2) {
for (unsigned j = 0; j < s.m_preds[i]->size(); ++j) {
nlsat::literal l = (*s.m_preds[i])[j];
max_level lv = s.m_bvar2level.find(l.var());
bool use =
(lv.m_fa == i && (lv.m_ex == UINT_MAX || lv.m_ex < lvl)) ||
(lv.m_ex == i && (lv.m_fa == UINT_MAX || lv.m_fa < lvl));
if (use) {
s.add_literal(s.m_asms, l);
}
}
}
TRACE("qe", s.display(tout);
tout << "assumptions\n";
for (nlsat::literal a : s.m_asms) {
s.m_solver.display(tout, a) << "\n";
});
s.save_model(is_exists(level()));
}
template<class S, class T>
void insert_set(S& set, T const& vec) {
for (auto const& v : vec) {
set.insert(v);
}
}
void mbp(unsigned level, nlsat::scoped_literal_vector& result) {
nlsat::var_vector vars;
uint_set fvars;
extract_vars(level, vars, fvars);
mbp(vars, fvars, result);
}
void extract_vars(unsigned level, nlsat::var_vector& vars, uint_set& fvars) {
for (unsigned i = 0; i < s.m_bound_rvars.size(); ++i) {
if (i < level) {
insert_set(fvars, s.m_bound_bvars[i]);
}
else {
vars.append(s.m_bound_rvars[i]);
}
}
}
void display_project(std::ostream& out, nlsat::var v, nlsat::scoped_literal_vector const& r1, nlsat::scoped_literal_vector const& r2) {
for (auto const& kv : s.m_x2t) {
out << "(declare-const x" << kv.m_key << " Real)\n";
}
s.m_solver.display(out << "(assert (not (exists ((", v) << " Real)) \n";
s.m_solver.display_smt2(out << "(and ", r1.size(), r1.data()) << "))))\n";
s.m_solver.display_smt2(out << "(assert (and ", r2.size(), r2.data()); out << "))\n";
out << "(check-sat)\n(reset)\n";
}
void mbp(nlsat::var_vector const& vars, uint_set const& fvars, clause& result) {
//
// Also project auxiliary variables from clausification.
//
s.unsave_model();
nlsat::explain& ex = s.m_solver.get_explain();
nlsat::scoped_literal_vector new_result(s.m_solver);
result.reset();
// project quantified Boolean variables.
for (nlsat::literal lit : s.m_asms) {
if (!s.m_b2a.contains(lit.var()) || fvars.contains(lit.var())) {
result.push_back(lit);
}
}
TRACE("qe", s.m_solver.display(tout, result.size(), result.data()); tout << "\n";);
// project quantified real variables.
// They are sorted by size, so we project the largest variables first to avoid
// renaming variables.
for (unsigned i = vars.size(); i-- > 0;) {
new_result.reset();
ex.project(vars[i], result.size(), result.data(), new_result);
TRACE("qe", display_project(tout, vars[i], result, new_result););
result.swap(new_result);
}
negate_clause(result);
}
void negate_clause(clause& result) {
for (unsigned i = 0; i < result.size(); ++i) {
result.set(i, ~result[i]);
}
}
unsigned level() const {
return s.level();
}
void enforce_parity(clause& cl) {
cl.push_back(is_exists()?~s.m_is_true:s.m_is_true);
}
void add_clause(clause& cl) {
if (cl.empty()) {
cl.push_back(~s.m_solver.mk_true());
}
SASSERT(!cl.empty());
nlsat::literal_vector lits(cl.size(), cl.data());
s.m_solver.mk_clause(lits.size(), lits.data());
}
max_level get_level(clause const& cl) {
return get_level(cl.size(), cl.data());
}
max_level get_level(unsigned n, nlsat::literal const* ls) {
max_level level;
for (unsigned i = 0; i < n; ++i) {
level.merge(get_level(ls[i]));
}
return level;
}
max_level get_level(nlsat::literal l) {
max_level level;
if (s.m_bvar2level.find(l.var(), level)) {
return level;
}
nlsat::var_vector vs;
s.m_solver.vars(l, vs);
TRACE("qe", s.m_solver.display(tout << vs << " ", l) << "\n";);
for (unsigned v : vs) {
level.merge(s.m_rvar2level.get(v, max_level()));
}
if (level == max_level())
throw default_exception("level not in NRA");
set_level(l.var(), level);
return level;
}
void set_level(nlsat::bool_var v, max_level const& level) {
unsigned k = level.max();
while (s.m_preds.size() <= k) {
s.m_preds.push_back(alloc(nlsat::scoped_literal_vector, s.m_solver));
}
nlsat::literal l(v, false);
s.m_preds[k]->push_back(l);
s.m_solver.inc_ref(v);
s.m_bvar2level.insert(v, level);
TRACE("qe", s.m_solver.display(tout, l); tout << ": " << level << "\n";);
}
void project() {
TRACE("qe", s.display_assumptions(tout););
if (!s.m_valid_model) {
pop(1);
return;
}
if (m_mode == elim_t) {
project_qe();
return;
}
SASSERT(level() >= 2);
unsigned num_scopes;
clause cl(s.m_solver);
mbp(level()-1, cl);
max_level clevel = get_level(cl);
enforce_parity(cl);
add_clause(cl);
if (clevel.max() == UINT_MAX) {
num_scopes = 2*(level()/2);
}
else {
SASSERT(clevel.max() + 2 <= level());
num_scopes = level() - clevel.max();
SASSERT(num_scopes >= 2);
}
TRACE("qe", tout << "backtrack: " << num_scopes << "\n";);
pop(num_scopes);
}
void project_qe() {
SASSERT(level() >= 1 && m_mode == elim_t && s.m_valid_model);
clause cl(s.m_solver);
mbp(std::max(1u, level()-1), cl);
expr_ref fml = s.clause2fml(cl);
TRACE("qe", tout << level() << ": " << fml << "\n";);
max_level clevel = get_level(cl);
if (level() == 1 || clevel.max() == 0) {
add_assumption_literal(cl, fml);
}
else {
enforce_parity(cl);
}
add_clause(cl);
if (level() == 1) { // is_forall() && clevel.max() == 0
add_to_answer(fml);
}
if (level() == 1) {
pop(1);
}
else {
pop(2);
}
}
void add_to_answer(expr_ref& fml) {
m_answer_simplify(fml);
expr* e;
if (m.is_not(fml, e)) {
m_answer_simplify.insert(e, m.mk_false());
}
else {
m_answer_simplify.insert(fml, m.mk_true());
}
m_answer.push_back(fml);
}
void add_assumption_literal(clause& clause, expr* fml) {
s.add_assumption_literal(clause, fml);
m_trail.push_back(fml);
}
bool is_exists() const { return is_exists(level()); }
bool is_forall() const { return is_forall(level()); }
bool is_exists(unsigned level) const { return (level % 2) == 0; }
bool is_forall(unsigned level) const { return is_exists(level+1); }
void check_cancel() {
}
struct div {
expr_ref num, den;
app_ref name;
div(ast_manager& m, expr* n, expr* d, app* nm):
num(n, m), den(d, m), name(nm, m) {}
};
class div_rewriter_cfg : public default_rewriter_cfg {
ast_manager& m;
arith_util a;
expr_ref m_zero;
vector<div> m_divs;
public:
div_rewriter_cfg(nlqsat& s): m(s.m), a(s.m), m_zero(a.mk_real(0), m) {}
~div_rewriter_cfg() {}
br_status reduce_app(func_decl* f, unsigned sz, expr* const* args, expr_ref& result, proof_ref& pr) {
rational r(1);
if (is_decl_of(f, a.get_family_id(), OP_DIV) &&
sz == 2 && (!a.is_numeral(args[1], r) || r.is_zero()) &&
is_ground(args[0]) && is_ground(args[1])) {
result = m.mk_fresh_const("div", a.mk_real());
m_divs.push_back(div(m, args[0], args[1], to_app(result)));
return BR_DONE;
}
return BR_FAILED;
}
vector<div> const& divs() const { return m_divs; }
};
//template class rewriter_tpl<div_rewriter_cfg>;
class div_rewriter_star : public rewriter_tpl<div_rewriter_cfg> {
div_rewriter_cfg m_cfg;
public:
div_rewriter_star(nlqsat& s):
rewriter_tpl<div_rewriter_cfg>(s.m, false, m_cfg),
m_cfg(s)
{}
vector<div> const& divs() const { return m_cfg.divs(); }
};
class is_pure_proc {
nlqsat& s;
arith_util a;
bool m_has_divs;
public:
is_pure_proc(nlqsat& s): s(s), a(s.m), m_has_divs(false) {}
void operator()(::var * n) {
if (!a.is_real(n) && !s.m.is_bool(n)) {
throw tactic_exception("not NRA");
}
}
void operator()(app * n) {
if (n->get_family_id() == s.m.get_basic_family_id()) {
return;
}
if (is_uninterp_const(n) && (a.is_real(n) || s.m.is_bool(n))) {
return;
}
if (a.is_mul(n) || a.is_add(n) || a.is_sub(n) || a.is_uminus(n) || a.is_numeral(n) ||
a.is_le(n) || a.is_ge(n) || a.is_lt(n) || a.is_gt(n)) {
return;
}
expr* n1, *n2;
rational r;
if (a.is_div(n, n1, n2) && a.is_numeral(n2, r) && !r.is_zero()) {
return;
}
if (a.is_power(n, n1, n2) && a.is_numeral(n2, r) && r.is_unsigned() && r.is_pos()) {
return;
}
if (a.is_div(n) && s.m_mode == qsat_t && is_ground(n)) {
m_has_divs = true;
return;
}
TRACE("qe", tout << "not NRA: " << mk_pp(n, s.m) << "\n";);
throw tactic_exception("not NRA");
}
void operator()(quantifier * n) {}
bool has_divs() const { return m_has_divs; }
};
/*
Ackermanize division
For each p/q:
q != 0 => div_pq*q = p
For each p/q, p'/q'
p = p', q = q' => div_pq = div_pq'
*/
void ackermanize_div(expr_ref& fml, expr_ref_vector& paxioms) {
is_pure_proc is_pure(*this);
{
expr_fast_mark1 visited;
quick_for_each_expr(is_pure, visited, fml);
}
if (is_pure.has_divs()) {
arith_util arith(m);
proof_ref pr(m);
div_rewriter_star rw(*this);
rw(fml, fml, pr);
vector<div> const& divs = rw.divs();
m_div_mc = alloc(generic_model_converter, m, "purify");
for (unsigned i = 0; i < divs.size(); ++i) {
expr_ref den_is0(m.mk_eq(divs[i].den, arith.mk_real(0)), m);
paxioms.push_back(m.mk_or(den_is0, m.mk_eq(divs[i].num, arith.mk_mul(divs[i].den, divs[i].name))));
for (unsigned j = i + 1; j < divs.size(); ++j) {
paxioms.push_back(m.mk_or(m.mk_not(m.mk_eq(divs[i].den, divs[j].den)),
m.mk_not(m.mk_eq(divs[i].num, divs[j].num)),
m.mk_eq(divs[i].name, divs[j].name)));
}
}
expr_ref body(arith.mk_real(0), m);
expr_ref v0(m.mk_var(0, arith.mk_real()), m);
expr_ref v1(m.mk_var(1, arith.mk_real()), m);
for (auto const& p : divs) {
body = m.mk_ite(m.mk_and(m.mk_eq(v0, p.num), m.mk_eq(v1, p.den)), p.name, body);
}
m_div_mc->add(arith.mk_div0(), body);
}
}
void reset() override {
s.reset();
m_st.reset();
s.m_solver.collect_statistics(m_st);
m_free_vars.reset();
m_answer.reset();
m_answer_simplify.reset();
m_trail.reset();
}
void push() {
s.m_cached_asms_lim.push_back(s.m_cached_asms.size());
}
void pop(unsigned num_scopes) {
s.clear_model();
unsigned new_level = level() - num_scopes;
s.m_cached_asms.shrink(s.m_cached_asms_lim[new_level]);
s.m_cached_asms_lim.shrink(new_level);
}
// expr -> nlsat::solver
bool hoist(expr_ref& fml) {
expr_ref_vector paxioms(m);
ackermanize_div(fml, paxioms);
quantifier_hoister hoist(m);
vector<app_ref_vector> qvars;
app_ref_vector vars(m);
bool is_forall = false;
pred_abs abs(m);
expr_ref fml_a(m.mk_and(fml, mk_and(paxioms)), m);
abs.get_free_vars(fml_a, vars);
insert_set(m_free_vars, vars);
qvars.push_back(vars);
vars.reset();
if (m_mode == elim_t) {
is_forall = true;
hoist.pull_quantifier(is_forall, fml, vars);
qvars.push_back(vars);
}
else {
hoist.pull_quantifier(is_forall, fml, vars);
qvars.back().append(vars);
}
do {
is_forall = !is_forall;
vars.reset();
hoist.pull_quantifier(is_forall, fml, vars);
qvars.push_back(vars);
}
while (!vars.empty());
SASSERT(qvars.size() >= 2);
SASSERT(qvars.back().empty());
s.init_expr2var(qvars);
expr_ref is_true(m), fml1(m), fml2(m);
is_true = m.mk_fresh_const("is_true", m.mk_bool_sort());
fml = m.mk_iff(is_true, fml);
goal_ref g = alloc(goal, m);
g->assert_expr(fml);
for (expr* f : paxioms) {
g->assert_expr(f);
}
expr_dependency_ref core(m);
goal_ref_buffer result;
(*m_nftactic)(g, result);
SASSERT(result.size() == 1);
TRACE("qe", result[0]->display(tout););
s.g2s(*result[0]);
// insert variables and their levels.
for (unsigned i = 0; i < qvars.size(); ++i) {
s.m_bound_bvars.push_back(svector<nlsat::bool_var>());
s.m_bound_rvars.push_back(nlsat::var_vector());
max_level lvl;
if (is_exists(i)) lvl.m_ex = i; else lvl.m_fa = i;
for (app* v : qvars[i]) {
if (s.m_a2b.is_var(v)) {
SASSERT(m.is_bool(v));
nlsat::bool_var b = s.m_a2b.to_var(v);
TRACE("qe", tout << mk_pp(v, m) << " |-> b" << b << "\n";);
s.m_bound_bvars.back().push_back(b);
set_level(b, lvl);
}
else if (s.m_t2x.is_var(v)) {
nlsat::var w = s.m_t2x.to_var(v);
TRACE("qe", tout << mk_pp(v, m) << " |-> x" << w << "\n";);
s.m_bound_rvars.back().push_back(w);
s.m_rvar2level.setx(w, lvl, max_level());
}
else {
TRACE("qe", tout << mk_pp(v, m) << " not found\n";);
}
}
}
s.init_var2expr();
s.m_is_true = nlsat::literal(s.m_a2b.to_var(is_true), false);
// insert literals from arithmetical sub-formulas
nlsat::atom_vector const& atoms = s.m_solver.get_atoms();
TRACE("qe", s.m_solver.display(tout););
for (unsigned i = 0; i < atoms.size(); ++i) {
if (atoms[i]) {
get_level(nlsat::literal(i, false));
}
}
TRACE("qe", tout << fml << "\n";);
return true;
}
// Return false if nlsat assigned noninteger value to an integer variable.
// [copied from nlsat_tactic.cpp]
bool mk_model(model_converter_ref & mc) {
bool ok = true;
model_ref md = alloc(model, m);
arith_util util(m);
for (auto const& kv : s.m_t2x) {
nlsat::var x = kv.m_value;
expr * t = kv.m_key;
if (!is_uninterp_const(t) || !m_free_vars.contains(t))
continue;
expr * v;
try {
v = util.mk_numeral(s.m_solver.am(), s.m_rmodel0.value(x), util.is_int(t));
}
catch (z3_error & ex) {
throw ex;
}
catch (z3_exception &) {
v = util.mk_to_int(util.mk_numeral(s.m_solver.am(), s.m_rmodel0.value(x), false));
ok = false;
}
md->register_decl(to_app(t)->get_decl(), v);
}
for (auto const& kv : s.m_a2b) {
expr * a = kv.m_key;
nlsat::bool_var b = kv.m_value;
if (a == nullptr || !is_uninterp_const(a) || b == s.m_is_true.var() || !m_free_vars.contains(a))
continue;
lbool val = s.m_bmodel0.get(b, l_undef);
if (val == l_undef)
continue; // don't care
md->register_decl(to_app(a)->get_decl(), val == l_true ? m.mk_true() : m.mk_false());
}
mc = model2model_converter(md.get());
return ok;
}
public:
nlqsat(ast_manager& m, qsat_mode_t mode, params_ref const& p):
m(m),
s(m, p),
m_mode(mode),
m_params(p),
m_nftactic(nullptr),
m_answer(m),
m_answer_simplify(m),
m_trail(m),
m_div_mc(nullptr) {
s.m_solver.get_explain().set_signed_project(true);
m_nftactic = mk_tseitin_cnf_tactic(m);
}
char const* name() const override { return "nlqsat"; }
void updt_params(params_ref const & p) override {
params_ref p2(p);
p2.set_bool("factor", false);
s.m_solver.updt_params(p2);
}
void collect_param_descrs(param_descrs & r) override {
}
void operator()(/* in */ goal_ref const & in,
/* out */ goal_ref_buffer & result) override {
tactic_report report("nlqsat-tactic", *in);
ptr_vector<expr> fmls;
expr_ref fml(m);
in->get_formulas(fmls);
fml = mk_and(m, fmls.size(), fmls.data());
if (m_mode == elim_t) {
fml = m.mk_not(fml);
}
reset();
TRACE("qe", tout << fml << "\n";);
if (!hoist(fml)) {
result.push_back(in.get());
return;
}
TRACE("qe", tout << "ex: " << fml << "\n";);
lbool is_sat = check_sat();
switch (is_sat) {
case l_false:
in->reset();
in->inc_depth();
if (m_mode == elim_t) {
fml = mk_and(m_answer);
}
else {
fml = m.mk_false();
}
in->assert_expr(fml);
result.push_back(in.get());
break;
case l_true:
SASSERT(m_mode == qsat_t);
in->reset();
in->inc_depth();
result.push_back(in.get());
if (in->models_enabled()) {
model_converter_ref mc;
VERIFY(mk_model(mc));
mc = concat(m_div_mc.get(), mc.get());
in->add(mc.get());
#if 0
model_ref mdl;
model_converter2model(m, mc.get(), mdl);
for (expr* f : fmls) {
if (is_ground(f))
std::cout << mk_pp(f, m) << " |-> " << (*mdl)(f) << "\n";
}
break;
ptr_vector<expr> todo;
todo.append(fmls.size(), fmls.c_ptr());
ast_mark visited;
while (!todo.empty()) {
expr* e = todo.back();
todo.pop_back();
if (visited.is_marked(e)) continue;
visited.mark(e, true);
if (is_ground(e)) {
std::cout << mk_pp(e, m) << " |-> " << (*mdl)(e) << "\n";
}
if (is_app(e)) {
for (expr* arg : *to_app(e)) todo.push_back(arg);
}
else if (is_quantifier(e)) {
todo.push_back(to_quantifier(e)->get_expr());
}
}
#endif
}
break;
case l_undef:
result.push_back(in.get());
throw tactic_exception("search failed");
}
}
void collect_statistics(statistics & st) const override {
st.copy(m_st);
st.update("qsat num rounds", m_stats.m_num_rounds);
}
void reset_statistics() override {
m_stats.reset();
s.m_solver.reset_statistics();
}
void cleanup() override {
reset();
}
void set_logic(symbol const & l) override {
}
void set_progress_callback(progress_callback * callback) override {
}
tactic * translate(ast_manager & m) override {
return alloc(nlqsat, m, m_mode, m_params);
}
};
};
tactic * mk_nlqsat_tactic(ast_manager & m, params_ref const& p) {
return alloc(qe::nlqsat, m, qe::qsat_t, p);
}
tactic * mk_nlqe_tactic(ast_manager & m, params_ref const& p) {
return alloc(qe::nlqsat, m, qe::elim_t, p);
}