forked from zeux/meshoptimizer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimplifier.cpp
1546 lines (1207 loc) · 45.4 KB
/
simplifier.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
#include "meshoptimizer.h"
#include <assert.h>
#include <float.h>
#include <math.h>
#include <string.h>
#ifndef TRACE
#define TRACE 0
#endif
#if TRACE
#include <stdio.h>
#endif
// This work is based on:
// Michael Garland and Paul S. Heckbert. Surface simplification using quadric error metrics. 1997
// Michael Garland. Quadric-based polygonal surface simplification. 1999
// Peter Lindstrom. Out-of-Core Simplification of Large Polygonal Models. 2000
// Matthias Teschner, Bruno Heidelberger, Matthias Mueller, Danat Pomeranets, Markus Gross. Optimized Spatial Hashing for Collision Detection of Deformable Objects. 2003
// Peter Van Sandt, Yannis Chronis, Jignesh M. Patel. Efficiently Searching In-Memory Sorted Arrays: Revenge of the Interpolation Search? 2019
namespace meshopt
{
struct EdgeAdjacency
{
unsigned int* counts;
unsigned int* offsets;
unsigned int* data;
};
static void buildEdgeAdjacency(EdgeAdjacency& adjacency, const unsigned int* indices, size_t index_count, size_t vertex_count, meshopt_Allocator& allocator)
{
size_t face_count = index_count / 3;
// allocate arrays
adjacency.counts = allocator.allocate<unsigned int>(vertex_count);
adjacency.offsets = allocator.allocate<unsigned int>(vertex_count);
adjacency.data = allocator.allocate<unsigned int>(index_count);
// fill edge counts
memset(adjacency.counts, 0, vertex_count * sizeof(unsigned int));
for (size_t i = 0; i < index_count; ++i)
{
assert(indices[i] < vertex_count);
adjacency.counts[indices[i]]++;
}
// fill offset table
unsigned int offset = 0;
for (size_t i = 0; i < vertex_count; ++i)
{
adjacency.offsets[i] = offset;
offset += adjacency.counts[i];
}
assert(offset == index_count);
// fill edge data
for (size_t i = 0; i < face_count; ++i)
{
unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2];
adjacency.data[adjacency.offsets[a]++] = b;
adjacency.data[adjacency.offsets[b]++] = c;
adjacency.data[adjacency.offsets[c]++] = a;
}
// fix offsets that have been disturbed by the previous pass
for (size_t i = 0; i < vertex_count; ++i)
{
assert(adjacency.offsets[i] >= adjacency.counts[i]);
adjacency.offsets[i] -= adjacency.counts[i];
}
}
struct PositionHasher
{
const float* vertex_positions;
size_t vertex_stride_float;
size_t hash(unsigned int index) const
{
// MurmurHash2
const unsigned int m = 0x5bd1e995;
const int r = 24;
unsigned int h = 0;
const unsigned int* key = reinterpret_cast<const unsigned int*>(vertex_positions + index * vertex_stride_float);
for (size_t i = 0; i < 3; ++i)
{
unsigned int k = key[i];
k *= m;
k ^= k >> r;
k *= m;
h *= m;
h ^= k;
}
return h;
}
bool equal(unsigned int lhs, unsigned int rhs) const
{
return memcmp(vertex_positions + lhs * vertex_stride_float, vertex_positions + rhs * vertex_stride_float, sizeof(float) * 3) == 0;
}
};
static size_t hashBuckets2(size_t count)
{
size_t buckets = 1;
while (buckets < count)
buckets *= 2;
return buckets;
}
template <typename T, typename Hash>
static T* hashLookup2(T* table, size_t buckets, const Hash& hash, const T& key, const T& empty)
{
assert(buckets > 0);
assert((buckets & (buckets - 1)) == 0);
size_t hashmod = buckets - 1;
size_t bucket = hash.hash(key) & hashmod;
for (size_t probe = 0; probe <= hashmod; ++probe)
{
T& item = table[bucket];
if (item == empty)
return &item;
if (hash.equal(item, key))
return &item;
// hash collision, quadratic probing
bucket = (bucket + probe + 1) & hashmod;
}
assert(false && "Hash table is full"); // unreachable
return 0;
}
static void buildPositionRemap(unsigned int* remap, unsigned int* wedge, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, meshopt_Allocator& allocator)
{
PositionHasher hasher = {vertex_positions_data, vertex_positions_stride / sizeof(float)};
size_t table_size = hashBuckets2(vertex_count);
unsigned int* table = allocator.allocate<unsigned int>(table_size);
memset(table, -1, table_size * sizeof(unsigned int));
// build forward remap: for each vertex, which other (canonical) vertex does it map to?
// we use position equivalence for this, and remap vertices to other existing vertices
for (size_t i = 0; i < vertex_count; ++i)
{
unsigned int index = unsigned(i);
unsigned int* entry = hashLookup2(table, table_size, hasher, index, ~0u);
if (*entry == ~0u)
*entry = index;
remap[index] = *entry;
}
// build wedge table: for each vertex, which other vertex is the next wedge that also maps to the same vertex?
// entries in table form a (cyclic) wedge loop per vertex; for manifold vertices, wedge[i] == remap[i] == i
for (size_t i = 0; i < vertex_count; ++i)
wedge[i] = unsigned(i);
for (size_t i = 0; i < vertex_count; ++i)
if (remap[i] != i)
{
unsigned int r = remap[i];
wedge[i] = wedge[r];
wedge[r] = unsigned(i);
}
}
enum VertexKind
{
Kind_Manifold, // not on an attribute seam, not on any boundary
Kind_Border, // not on an attribute seam, has exactly two open edges
Kind_Seam, // on an attribute seam with exactly two attribute seam edges
Kind_Complex, // none of the above; these vertices can move as long as all wedges move to the target vertex
Kind_Locked, // none of the above; these vertices can't move
Kind_Count
};
// manifold vertices can collapse onto anything
// border/seam vertices can only be collapsed onto border/seam respectively
// complex vertices can collapse onto complex/locked
// a rule of thumb is that collapsing kind A into kind B preserves the kind B in the target vertex
// for example, while we could collapse Complex into Manifold, this would mean the target vertex isn't Manifold anymore
const unsigned char kCanCollapse[Kind_Count][Kind_Count] = {
{1, 1, 1, 1, 1},
{0, 1, 0, 0, 0},
{0, 0, 1, 0, 0},
{0, 0, 0, 1, 1},
{0, 0, 0, 0, 0},
};
// if a vertex is manifold or seam, adjoining edges are guaranteed to have an opposite edge
// note that for seam edges, the opposite edge isn't present in the attribute-based topology
// but is present if you consider a position-only mesh variant
const unsigned char kHasOpposite[Kind_Count][Kind_Count] = {
{1, 1, 1, 0, 1},
{1, 0, 1, 0, 0},
{1, 1, 1, 0, 1},
{0, 0, 0, 0, 0},
{1, 0, 1, 0, 0},
};
static bool hasEdge(const EdgeAdjacency& adjacency, unsigned int a, unsigned int b)
{
unsigned int count = adjacency.counts[a];
const unsigned int* data = adjacency.data + adjacency.offsets[a];
for (size_t i = 0; i < count; ++i)
if (data[i] == b)
return true;
return false;
}
static unsigned int findWedgeEdge(const EdgeAdjacency& adjacency, const unsigned int* wedge, unsigned int a, unsigned int b)
{
unsigned int v = a;
do
{
if (hasEdge(adjacency, v, b))
return v;
v = wedge[v];
} while (v != a);
return ~0u;
}
static size_t countOpenEdges(const EdgeAdjacency& adjacency, unsigned int vertex, unsigned int* last = 0)
{
size_t result = 0;
unsigned int count = adjacency.counts[vertex];
const unsigned int* data = adjacency.data + adjacency.offsets[vertex];
for (size_t i = 0; i < count; ++i)
if (!hasEdge(adjacency, data[i], vertex))
{
result++;
if (last)
*last = data[i];
}
return result;
}
static void classifyVertices(unsigned char* result, unsigned int* loop, size_t vertex_count, const EdgeAdjacency& adjacency, const unsigned int* remap, const unsigned int* wedge)
{
for (size_t i = 0; i < vertex_count; ++i)
loop[i] = ~0u;
#if TRACE
size_t lockedstats[4] = {};
#define TRACELOCKED(i) lockedstats[i]++;
#else
#define TRACELOCKED(i) (void)0
#endif
for (size_t i = 0; i < vertex_count; ++i)
{
if (remap[i] == i)
{
if (wedge[i] == i)
{
// no attribute seam, need to check if it's manifold
unsigned int v = 0;
size_t edges = countOpenEdges(adjacency, unsigned(i), &v);
// note: we classify any vertices with no open edges as manifold
// this is technically incorrect - if 4 triangles share an edge, we'll classify vertices as manifold
// it's unclear if this is a problem in practice
// also note that we classify vertices as border if they have *one* open edge, not two
// this is because we only have half-edges - so a border vertex would have one incoming and one outgoing edge
if (edges == 0)
{
result[i] = Kind_Manifold;
}
else if (edges == 1)
{
result[i] = Kind_Border;
loop[i] = v;
}
else
{
result[i] = Kind_Locked;
TRACELOCKED(0);
}
}
else if (wedge[wedge[i]] == i)
{
// attribute seam; need to distinguish between Seam and Locked
unsigned int a = 0;
size_t a_count = countOpenEdges(adjacency, unsigned(i), &a);
unsigned int b = 0;
size_t b_count = countOpenEdges(adjacency, wedge[i], &b);
// seam should have one open half-edge for each vertex, and the edges need to "connect" - point to the same vertex post-remap
if (a_count == 1 && b_count == 1)
{
unsigned int ao = findWedgeEdge(adjacency, wedge, a, wedge[i]);
unsigned int bo = findWedgeEdge(adjacency, wedge, b, unsigned(i));
if (ao != ~0u && bo != ~0u)
{
result[i] = Kind_Seam;
loop[i] = a;
loop[wedge[i]] = b;
}
else
{
result[i] = Kind_Locked;
TRACELOCKED(1);
}
}
else
{
result[i] = Kind_Locked;
TRACELOCKED(2);
}
}
else
{
// more than one vertex maps to this one; we don't have classification available
result[i] = Kind_Locked;
TRACELOCKED(3);
}
}
else
{
assert(remap[i] < i);
result[i] = result[remap[i]];
}
}
#if TRACE
printf("locked: many open edges %d, disconnected seam %d, many seam edges %d, many wedges %d\n",
int(lockedstats[0]), int(lockedstats[1]), int(lockedstats[2]), int(lockedstats[3]));
#endif
}
struct Vector3
{
float x, y, z;
};
static void rescalePositions(Vector3* result, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride)
{
size_t vertex_stride_float = vertex_positions_stride / sizeof(float);
float minv[3] = {FLT_MAX, FLT_MAX, FLT_MAX};
float maxv[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX};
for (size_t i = 0; i < vertex_count; ++i)
{
const float* v = vertex_positions_data + i * vertex_stride_float;
result[i].x = v[0];
result[i].y = v[1];
result[i].z = v[2];
for (int j = 0; j < 3; ++j)
{
float vj = v[j];
minv[j] = minv[j] > vj ? vj : minv[j];
maxv[j] = maxv[j] < vj ? vj : maxv[j];
}
}
float extent = 0.f;
extent = (maxv[0] - minv[0]) < extent ? extent : (maxv[0] - minv[0]);
extent = (maxv[1] - minv[1]) < extent ? extent : (maxv[1] - minv[1]);
extent = (maxv[2] - minv[2]) < extent ? extent : (maxv[2] - minv[2]);
float scale = extent == 0 ? 0.f : 1.f / extent;
for (size_t i = 0; i < vertex_count; ++i)
{
result[i].x = (result[i].x - minv[0]) * scale;
result[i].y = (result[i].y - minv[1]) * scale;
result[i].z = (result[i].z - minv[2]) * scale;
}
}
struct Quadric
{
float a00, a11, a22;
float a10, a20, a21;
float b0, b1, b2, c;
float w;
};
struct Collapse
{
unsigned int v0;
unsigned int v1;
union {
unsigned int bidi;
float error;
unsigned int errorui;
};
};
static float normalize(Vector3& v)
{
float length = sqrtf(v.x * v.x + v.y * v.y + v.z * v.z);
if (length > 0)
{
v.x /= length;
v.y /= length;
v.z /= length;
}
return length;
}
static void quadricAdd(Quadric& Q, const Quadric& R)
{
Q.a00 += R.a00;
Q.a11 += R.a11;
Q.a22 += R.a22;
Q.a10 += R.a10;
Q.a20 += R.a20;
Q.a21 += R.a21;
Q.b0 += R.b0;
Q.b1 += R.b1;
Q.b2 += R.b2;
Q.c += R.c;
Q.w += R.w;
}
static float quadricError(const Quadric& Q, const Vector3& v)
{
float rx = Q.b0;
float ry = Q.b1;
float rz = Q.b2;
rx += Q.a10 * v.y;
ry += Q.a21 * v.z;
rz += Q.a20 * v.x;
rx *= 2;
ry *= 2;
rz *= 2;
rx += Q.a00 * v.x;
ry += Q.a11 * v.y;
rz += Q.a22 * v.z;
float r = Q.c;
r += rx * v.x;
r += ry * v.y;
r += rz * v.z;
float s = Q.w == 0.f ? 0.f : 1.f / Q.w;
return fabsf(r) * s;
}
static void quadricFromPlane(Quadric& Q, float a, float b, float c, float d, float w)
{
float aw = a * w;
float bw = b * w;
float cw = c * w;
float dw = d * w;
Q.a00 = a * aw;
Q.a11 = b * bw;
Q.a22 = c * cw;
Q.a10 = a * bw;
Q.a20 = a * cw;
Q.a21 = b * cw;
Q.b0 = a * dw;
Q.b1 = b * dw;
Q.b2 = c * dw;
Q.c = d * dw;
Q.w = w;
}
static void quadricFromPoint(Quadric& Q, float x, float y, float z, float w)
{
// we need to encode (x - X) ^ 2 + (y - Y)^2 + (z - Z)^2 into the quadric
Q.a00 = w;
Q.a11 = w;
Q.a22 = w;
Q.a10 = 0.f;
Q.a20 = 0.f;
Q.a21 = 0.f;
Q.b0 = -2.f * x * w;
Q.b1 = -2.f * y * w;
Q.b2 = -2.f * z * w;
Q.c = (x * x + y * y + z * z) * w;
Q.w = w;
}
static void quadricFromTriangle(Quadric& Q, const Vector3& p0, const Vector3& p1, const Vector3& p2, float weight)
{
Vector3 p10 = {p1.x - p0.x, p1.y - p0.y, p1.z - p0.z};
Vector3 p20 = {p2.x - p0.x, p2.y - p0.y, p2.z - p0.z};
// normal = cross(p1 - p0, p2 - p0)
Vector3 normal = {p10.y * p20.z - p10.z * p20.y, p10.z * p20.x - p10.x * p20.z, p10.x * p20.y - p10.y * p20.x};
float area = normalize(normal);
float distance = normal.x * p0.x + normal.y * p0.y + normal.z * p0.z;
// we use sqrtf(area) so that the error is scaled linearly; this tends to improve silhouettes
quadricFromPlane(Q, normal.x, normal.y, normal.z, -distance, sqrtf(area) * weight);
}
static void quadricFromTriangleEdge(Quadric& Q, const Vector3& p0, const Vector3& p1, const Vector3& p2, float weight)
{
Vector3 p10 = {p1.x - p0.x, p1.y - p0.y, p1.z - p0.z};
float length = normalize(p10);
// p20p = length of projection of p2-p0 onto normalize(p1 - p0)
Vector3 p20 = {p2.x - p0.x, p2.y - p0.y, p2.z - p0.z};
float p20p = p20.x * p10.x + p20.y * p10.y + p20.z * p10.z;
// normal = altitude of triangle from point p2 onto edge p1-p0
Vector3 normal = {p20.x - p10.x * p20p, p20.y - p10.y * p20p, p20.z - p10.z * p20p};
normalize(normal);
float distance = normal.x * p0.x + normal.y * p0.y + normal.z * p0.z;
// note: the weight is scaled linearly with edge length; this has to match the triangle weight
quadricFromPlane(Q, normal.x, normal.y, normal.z, -distance, length * weight);
}
static void fillFaceQuadrics(Quadric* vertex_quadrics, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const unsigned int* remap)
{
for (size_t i = 0; i < index_count; i += 3)
{
unsigned int i0 = indices[i + 0];
unsigned int i1 = indices[i + 1];
unsigned int i2 = indices[i + 2];
Quadric Q;
quadricFromTriangle(Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], 1.f);
quadricAdd(vertex_quadrics[remap[i0]], Q);
quadricAdd(vertex_quadrics[remap[i1]], Q);
quadricAdd(vertex_quadrics[remap[i2]], Q);
}
}
static void fillEdgeQuadrics(Quadric* vertex_quadrics, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const unsigned int* remap, const unsigned char* vertex_kind, const unsigned int* loop)
{
for (size_t i = 0; i < index_count; i += 3)
{
static const int next[3] = {1, 2, 0};
for (int e = 0; e < 3; ++e)
{
unsigned int i0 = indices[i + e];
unsigned int i1 = indices[i + next[e]];
unsigned char k0 = vertex_kind[i0];
unsigned char k1 = vertex_kind[i1];
// check that i0 and i1 are border/seam and are on the same edge loop
// loop[] tracks half edges so we only need to check i0->i1
if (k0 != k1 || (k0 != Kind_Border && k0 != Kind_Seam) || loop[i0] != i1)
continue;
unsigned int i2 = indices[i + next[next[e]]];
// we try hard to maintain border edge geometry; seam edges can move more freely
// due to topological restrictions on collapses, seam quadrics slightly improves collapse structure but aren't critical
const float kEdgeWeightSeam = 1.f;
const float kEdgeWeightBorder = 10.f;
float edgeWeight = (k0 == Kind_Seam) ? kEdgeWeightSeam : kEdgeWeightBorder;
Quadric Q;
quadricFromTriangleEdge(Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], edgeWeight);
quadricAdd(vertex_quadrics[remap[i0]], Q);
quadricAdd(vertex_quadrics[remap[i1]], Q);
}
}
}
static size_t pickEdgeCollapses(Collapse* collapses, const unsigned int* indices, size_t index_count, const unsigned int* remap, const unsigned char* vertex_kind, const unsigned int* loop)
{
size_t collapse_count = 0;
for (size_t i = 0; i < index_count; i += 3)
{
static const int next[3] = {1, 2, 0};
for (int e = 0; e < 3; ++e)
{
unsigned int i0 = indices[i + e];
unsigned int i1 = indices[i + next[e]];
// this can happen either when input has a zero-length edge, or when we perform collapses for complex
// topology w/seams and collapse a manifold vertex that connects to both wedges onto one of them
// we leave edges like this alone since they may be important for preserving mesh integrity
if (remap[i0] == remap[i1])
continue;
unsigned char k0 = vertex_kind[i0];
unsigned char k1 = vertex_kind[i1];
// the edge has to be collapsible in at least one direction
if (!(kCanCollapse[k0][k1] | kCanCollapse[k1][k0]))
continue;
// manifold and seam edges should occur twice (i0->i1 and i1->i0) - skip redundant edges
if (kHasOpposite[k0][k1] && remap[i1] > remap[i0])
continue;
// two vertices are on a border or a seam, but there's no direct edge between them
// this indicates that they belong to two different edge loops and we should not collapse this edge
// loop[] tracks half edges so we only need to check i0->i1
if (k0 == k1 && (k0 == Kind_Border || k0 == Kind_Seam) && loop[i0] != i1)
continue;
// edge can be collapsed in either direction - we will pick the one with minimum error
// note: we evaluate error later during collapse ranking, here we just tag the edge as bidirectional
if (kCanCollapse[k0][k1] & kCanCollapse[k1][k0])
{
Collapse c = {i0, i1, {/* bidi= */ 1}};
collapses[collapse_count++] = c;
}
else
{
// edge can only be collapsed in one direction
unsigned int e0 = kCanCollapse[k0][k1] ? i0 : i1;
unsigned int e1 = kCanCollapse[k0][k1] ? i1 : i0;
Collapse c = {e0, e1, {/* bidi= */ 0}};
collapses[collapse_count++] = c;
}
}
}
return collapse_count;
}
static void rankEdgeCollapses(Collapse* collapses, size_t collapse_count, const Vector3* vertex_positions, const Quadric* vertex_quadrics, const unsigned int* remap)
{
for (size_t i = 0; i < collapse_count; ++i)
{
Collapse& c = collapses[i];
unsigned int i0 = c.v0;
unsigned int i1 = c.v1;
// most edges are bidirectional which means we need to evaluate errors for two collapses
// to keep this code branchless we just use the same edge for unidirectional edges
unsigned int j0 = c.bidi ? i1 : i0;
unsigned int j1 = c.bidi ? i0 : i1;
const Quadric& qi = vertex_quadrics[remap[i0]];
const Quadric& qj = vertex_quadrics[remap[j0]];
float ei = quadricError(qi, vertex_positions[i1]);
float ej = quadricError(qj, vertex_positions[j1]);
// pick edge direction with minimal error
c.v0 = ei <= ej ? i0 : j0;
c.v1 = ei <= ej ? i1 : j1;
c.error = ei <= ej ? ei : ej;
}
}
#if TRACE > 1
static void dumpEdgeCollapses(const Collapse* collapses, size_t collapse_count, const unsigned char* vertex_kind)
{
size_t ckinds[Kind_Count][Kind_Count] = {};
float cerrors[Kind_Count][Kind_Count] = {};
for (int k0 = 0; k0 < Kind_Count; ++k0)
for (int k1 = 0; k1 < Kind_Count; ++k1)
cerrors[k0][k1] = FLT_MAX;
for (size_t i = 0; i < collapse_count; ++i)
{
unsigned int i0 = collapses[i].v0;
unsigned int i1 = collapses[i].v1;
unsigned char k0 = vertex_kind[i0];
unsigned char k1 = vertex_kind[i1];
ckinds[k0][k1]++;
cerrors[k0][k1] = (collapses[i].error < cerrors[k0][k1]) ? collapses[i].error : cerrors[k0][k1];
}
for (int k0 = 0; k0 < Kind_Count; ++k0)
for (int k1 = 0; k1 < Kind_Count; ++k1)
if (ckinds[k0][k1])
printf("collapses %d -> %d: %d, min error %e\n", k0, k1, int(ckinds[k0][k1]), cerrors[k0][k1]);
}
static void dumpLockedCollapses(const unsigned int* indices, size_t index_count, const unsigned char* vertex_kind)
{
size_t locked_collapses[Kind_Count][Kind_Count] = {};
for (size_t i = 0; i < index_count; i += 3)
{
static const int next[3] = {1, 2, 0};
for (int e = 0; e < 3; ++e)
{
unsigned int i0 = indices[i + e];
unsigned int i1 = indices[i + next[e]];
unsigned char k0 = vertex_kind[i0];
unsigned char k1 = vertex_kind[i1];
locked_collapses[k0][k1] += !kCanCollapse[k0][k1] && !kCanCollapse[k1][k0];
}
}
for (int k0 = 0; k0 < Kind_Count; ++k0)
for (int k1 = 0; k1 < Kind_Count; ++k1)
if (locked_collapses[k0][k1])
printf("locked collapses %d -> %d: %d\n", k0, k1, int(locked_collapses[k0][k1]));
}
#endif
static void sortEdgeCollapses(unsigned int* sort_order, const Collapse* collapses, size_t collapse_count)
{
const int sort_bits = 11;
// fill histogram for counting sort
unsigned int histogram[1 << sort_bits];
memset(histogram, 0, sizeof(histogram));
for (size_t i = 0; i < collapse_count; ++i)
{
// skip sign bit since error is non-negative
unsigned int key = (collapses[i].errorui << 1) >> (32 - sort_bits);
histogram[key]++;
}
// compute offsets based on histogram data
size_t histogram_sum = 0;
for (size_t i = 0; i < 1 << sort_bits; ++i)
{
size_t count = histogram[i];
histogram[i] = unsigned(histogram_sum);
histogram_sum += count;
}
assert(histogram_sum == collapse_count);
// compute sort order based on offsets
for (size_t i = 0; i < collapse_count; ++i)
{
// skip sign bit since error is non-negative
unsigned int key = (collapses[i].errorui << 1) >> (32 - sort_bits);
sort_order[histogram[key]++] = unsigned(i);
}
}
static size_t performEdgeCollapses(unsigned int* collapse_remap, unsigned char* collapse_locked, Quadric* vertex_quadrics, const Collapse* collapses, size_t collapse_count, const unsigned int* collapse_order, const unsigned int* remap, const unsigned int* wedge, const unsigned char* vertex_kind, size_t triangle_collapse_goal, float error_goal, float error_limit)
{
size_t edge_collapses = 0;
size_t triangle_collapses = 0;
for (size_t i = 0; i < collapse_count; ++i)
{
const Collapse& c = collapses[collapse_order[i]];
if (c.error > error_limit)
break;
if (c.error > error_goal && triangle_collapses > triangle_collapse_goal / 10)
break;
if (triangle_collapses >= triangle_collapse_goal)
break;
unsigned int i0 = c.v0;
unsigned int i1 = c.v1;
unsigned int r0 = remap[i0];
unsigned int r1 = remap[i1];
// we don't collapse vertices that had source or target vertex involved in a collapse
// it's important to not move the vertices twice since it complicates the tracking/remapping logic
// it's important to not move other vertices towards a moved vertex to preserve error since we don't re-rank collapses mid-pass
if (collapse_locked[r0] | collapse_locked[r1])
continue;
assert(collapse_remap[r0] == r0);
assert(collapse_remap[r1] == r1);
quadricAdd(vertex_quadrics[r1], vertex_quadrics[r0]);
if (vertex_kind[i0] == Kind_Complex)
{
unsigned int v = i0;
do
{
collapse_remap[v] = r1;
v = wedge[v];
} while (v != i0);
}
else if (vertex_kind[i0] == Kind_Seam)
{
// remap v0 to v1 and seam pair of v0 to seam pair of v1
unsigned int s0 = wedge[i0];
unsigned int s1 = wedge[i1];
assert(s0 != i0 && s1 != i1);
assert(wedge[s0] == i0 && wedge[s1] == i1);
collapse_remap[i0] = i1;
collapse_remap[s0] = s1;
}
else
{
assert(wedge[i0] == i0);
collapse_remap[i0] = i1;
}
collapse_locked[r0] = 1;
collapse_locked[r1] = 1;
// border edges collapse 1 triangle, other edges collapse 2 or more
triangle_collapses += (vertex_kind[i0] == Kind_Border) ? 1 : 2;
edge_collapses++;
}
return edge_collapses;
}
static size_t remapIndexBuffer(unsigned int* indices, size_t index_count, const unsigned int* collapse_remap)
{
size_t write = 0;
for (size_t i = 0; i < index_count; i += 3)
{
unsigned int v0 = collapse_remap[indices[i + 0]];
unsigned int v1 = collapse_remap[indices[i + 1]];
unsigned int v2 = collapse_remap[indices[i + 2]];
// we never move the vertex twice during a single pass
assert(collapse_remap[v0] == v0);
assert(collapse_remap[v1] == v1);
assert(collapse_remap[v2] == v2);
if (v0 != v1 && v0 != v2 && v1 != v2)
{
indices[write + 0] = v0;
indices[write + 1] = v1;
indices[write + 2] = v2;
write += 3;
}
}
return write;
}
static void remapEdgeLoops(unsigned int* loop, size_t vertex_count, const unsigned int* collapse_remap)
{
for (size_t i = 0; i < vertex_count; ++i)
{
if (loop[i] != ~0u)
{
unsigned int l = loop[i];
unsigned int r = collapse_remap[l];
// i == r is a special case when the seam edge is collapsed in a direction opposite to where loop goes
loop[i] = (i == r) ? loop[l] : r;
}
}
}
struct CellHasher
{
const unsigned int* vertex_ids;
size_t hash(unsigned int i) const
{
unsigned int h = vertex_ids[i];
// MurmurHash2 finalizer
h ^= h >> 13;
h *= 0x5bd1e995;
h ^= h >> 15;
return h;
}
bool equal(unsigned int lhs, unsigned int rhs) const
{
return vertex_ids[lhs] == vertex_ids[rhs];
}
};
struct IdHasher
{
size_t hash(unsigned int id) const
{
unsigned int h = id;
// MurmurHash2 finalizer
h ^= h >> 13;
h *= 0x5bd1e995;
h ^= h >> 15;
return h;
}
bool equal(unsigned int lhs, unsigned int rhs) const
{
return lhs == rhs;
}
};
struct TriangleHasher
{
unsigned int* indices;
size_t hash(unsigned int i) const
{
const unsigned int* tri = indices + i * 3;
// Optimized Spatial Hashing for Collision Detection of Deformable Objects
return (tri[0] * 73856093) ^ (tri[1] * 19349663) ^ (tri[2] * 83492791);
}
bool equal(unsigned int lhs, unsigned int rhs) const
{
const unsigned int* lt = indices + lhs * 3;
const unsigned int* rt = indices + rhs * 3;
return lt[0] == rt[0] && lt[1] == rt[1] && lt[2] == rt[2];
}
};
static void computeVertexIds(unsigned int* vertex_ids, const Vector3* vertex_positions, size_t vertex_count, int grid_size)
{
assert(grid_size >= 1 && grid_size <= 1024);
float cell_scale = float(grid_size - 1);
for (size_t i = 0; i < vertex_count; ++i)
{
const Vector3& v = vertex_positions[i];
int xi = int(v.x * cell_scale + 0.5f);
int yi = int(v.y * cell_scale + 0.5f);
int zi = int(v.z * cell_scale + 0.5f);
vertex_ids[i] = (xi << 20) | (yi << 10) | zi;
}
}
static size_t countTriangles(const unsigned int* vertex_ids, const unsigned int* indices, size_t index_count)
{
size_t result = 0;
for (size_t i = 0; i < index_count; i += 3)
{
unsigned int id0 = vertex_ids[indices[i + 0]];
unsigned int id1 = vertex_ids[indices[i + 1]];
unsigned int id2 = vertex_ids[indices[i + 2]];
result += (id0 != id1) & (id0 != id2) & (id1 != id2);
}
return result;
}