-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
86 lines (60 loc) · 2.84 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import torch
import torch.nn as nn
import torchvision.models as models
class EncoderCNN(nn.Module):
def __init__(self, embed_size):
super(EncoderCNN, self).__init__()
resnet = models.resnet50(pretrained=True)
for param in resnet.parameters():
param.requires_grad_(False)
modules = list(resnet.children())[:-1]
self.resnet = nn.Sequential(*modules)
self.embed = nn.Linear(resnet.fc.in_features, embed_size)
def forward(self, images):
features = self.resnet(images)
features = features.view(features.size(0), -1)
features = self.embed(features)
return features
class DecoderRNN(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, num_layers=1):
super().__init__()
self.num_layers = num_layers
self.hidden_size = hidden_size
#Embedding Vector - words into vectors
self.word_embeddings = nn.Embedding(vocab_size, embed_size)
#LSTM Input-Embedding Vector, Output - Hidden States
self.lstm = nn.LSTM(embed_size,hidden_size,num_layers,batch_first= True)
# FC Layer
self.fc = nn.Linear(hidden_size,vocab_size)
def forward(self, features, captions):
captions = captions[:, :-1]
#Vector for each word
captions = self.word_embeddings(captions)
#Concat the features for image and caption
inputs = torch.cat((features.unsqueeze(dim=1),captions), dim=1)
# Gets the output and hidden state from the LSTM afer passing through the word embeddings
lstm_out, hidden = self.lstm(inputs)
#FC layer
outputs=self.fc(lstm_out)
return outputs
def sample(self, inputs, states=None, max_len=20):
" accepts pre-processed image tensor (inputs) and returns predicted sentence (list of tensor ids of length max_len) "
outputs = []
output_length = 0
hidden = (torch.randn(self.num_layers, 1, self.hidden_size).to(inputs.device),
torch.randn(self.num_layers, 1, self.hidden_size).to(inputs.device))
for ii in range(max_len):
#LSTM layer
output, hidden = self.lstm(inputs,hidden)
# FC Layer
output = self.fc(output.squeeze(dim=1))
_,index = torch.max(output,1)
#CUDA Tensor to CPU and then to Numpy
outputs.append(index.cpu().numpy()[0].item())
if (index ==1) :
break
# Embed the predicted word as the new input to LSTM
inputs = self.word_embeddings(index)
inputs = inputs.unsqueeze(1)
output_length +=1
return outputs