forked from PRML/PRMLT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmixGaussVb.m
145 lines (134 loc) · 3.64 KB
/
mixGaussVb.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
function [label, model, L] = mixGaussVb(X, m, prior)
% Variational Bayesian inference for Gaussian mixture.
% Input:
% X: d x n data matrix
% m: k (1 x 1) or label (1 x n, 1<=label(i)<=k) or model structure
% Output:
% label: 1 x n cluster label
% model: trained model structure
% L: variational lower bound
% Reference: Pattern Recognition and Machine Learning by Christopher M. Bishop (P.474)
% Written by Mo Chen ([email protected]).
fprintf('Variational Bayesian Gaussian mixture: running ... \n');
[d,n] = size(X);
if nargin < 3
prior.alpha = 1;
prior.kappa = 1;
prior.m = mean(X,2);
prior.v = d+1;
prior.M = eye(d); % M = inv(W)
end
prior.logW = -2*sum(log(diag(chol(prior.M))));
tol = 1e-8;
maxiter = 2000;
L = -inf(1,maxiter);
model = init(X,m,prior);
for iter = 2:maxiter
model = expect(X,model);
model = maximize(X,model,prior);
L(iter) = bound(X,model,prior)/n;
if abs(L(iter)-L(iter-1)) < tol*abs(L(iter)); break; end
end
L = L(2:iter);
label = zeros(1,n);
[~,label(:)] = max(model.R,[],2);
[~,~,label(:)] = unique(label);
function model = init(X, m, prior)
n = size(X,2);
if isstruct(m) % init with a model
model = m;
elseif numel(m) == 1 % random init k
k = m;
label = ceil(k*rand(1,n));
model.R = full(sparse(1:n,label,1,n,k,n));
elseif all(size(m)==[1,n]) % init with labels
label = m;
k = max(label);
model.R = full(sparse(1:n,label,1,n,k,n));
else
error('ERROR: init is not valid.');
end
model = maximize(X,model,prior);
% Done
function model = maximize(X, model, prior)
alpha0 = prior.alpha;
kappa0 = prior.kappa;
m0 = prior.m;
v0 = prior.v;
M0 = prior.M;
R = model.R;
nk = sum(R,1); % 10.51
alpha = alpha0+nk; % 10.58
kappa = kappa0+nk; % 10.60
v = v0+nk; % 10.63
m = bsxfun(@plus,kappa0*m0,X*R);
m = bsxfun(@times,m,1./kappa); % 10.61
[d,k] = size(m);
U = zeros(d,d,k);
logW = zeros(1,k);
r = sqrt(R');
for i = 1:k
Xm = bsxfun(@minus,X,m(:,i));
Xm = bsxfun(@times,Xm,r(i,:));
m0m = m0-m(:,i);
M = M0+Xm*Xm'+kappa0*(m0m*m0m'); % equivalent to 10.62
U(:,:,i) = chol(M);
logW(i) = -2*sum(log(diag(U(:,:,i))));
end
model.alpha = alpha;
model.kappa = kappa;
model.m = m;
model.v = v;
model.U = U;
model.logW = logW;
% Done
function model = expect(X, model)
alpha = model.alpha; % Dirichlet
kappa = model.kappa; % Gaussian
m = model.m; % Gasusian
v = model.v; % Whishart
U = model.U; % Whishart
logW = model.logW;
n = size(X,2);
[d,k] = size(m);
EQ = zeros(n,k);
for i = 1:k
Q = (U(:,:,i)'\bsxfun(@minus,X,m(:,i)));
EQ(:,i) = d/kappa(i)+v(i)*dot(Q,Q,1); % 10.64
end
ElogLambda = sum(psi(0,0.5*bsxfun(@minus,v+1,(1:d)')),1)+d*log(2)+logW; % 10.65
Elogpi = psi(0,alpha)-psi(0,sum(alpha)); % 10.66
logRho = -0.5*bsxfun(@minus,EQ,ElogLambda-d*log(2*pi)); % 10.46
logRho = bsxfun(@plus,logRho,Elogpi); % 10.46
logR = bsxfun(@minus,logRho,logsumexp(logRho,2)); % 10.49
R = exp(logR);
model.logR = logR;
model.R = R;
% Done
function L = bound(X, model, prior)
alpha0 = prior.alpha;
kappa0 = prior.kappa;
v0 = prior.v;
logW0 = prior.logW;
alpha = model.alpha;
kappa = model.kappa;
v = model.v;
logW = model.logW;
R = model.R;
logR = model.logR;
[d,n] = size(X);
k = size(R,2);
Epz = 0;
Eqz = dot(R(:),logR(:));
logCalpha0 = gammaln(k*alpha0)-k*gammaln(alpha0);
Eppi = logCalpha0;
logCalpha = gammaln(sum(alpha))-sum(gammaln(alpha));
Eqpi = logCalpha;
Epmu = 0.5*d*k*log(kappa0);
Eqmu = 0.5*d*sum(log(kappa));
logB0 = -0.5*v0*(logW0+d*log(2))-logMvGamma(0.5*v0,d);
EpLambda = k*logB0;
logB = -0.5*v.*(logW+d*log(2))-logMvGamma(0.5*v,d);
EqLambda = sum(logB);
EpX = -0.5*d*n*log(2*pi);
L = Epz-Eqz+Eppi-Eqpi+Epmu-Eqmu+EpLambda-EqLambda+EpX;