This repo contains IPython notebooks from my scikit-learn video series, as seen on Kaggle's blog.
- Watch the entire series (YouTube playlist)
- View the IPython Notebooks (nbviewer)
- Read the blog posts (Kaggle's blog)
-
What is machine learning, and how does it work? (video, notebook, blog post)
- What is machine learning?
- What are the two main categories of machine learning?
- What are some examples of machine learning?
- How does machine learning "work"?
-
Setting up Python for machine learning: scikit-learn and IPython Notebook (video, notebook, blog post)
- What are the benefits and drawbacks of scikit-learn?
- How do I install scikit-learn?
- How do I use the IPython Notebook?
- What are some good resources for learning Python?
-
Getting started in scikit-learn with the famous iris dataset (video, notebook, blog post)
- What is the famous iris dataset, and how does it relate to machine learning?
- How do we load the iris dataset into scikit-learn?
- How do we describe a dataset using machine learning terminology?
- What are scikit-learn's four key requirements for working with data?
-
Training a machine learning model with scikit-learn (video, notebook, blog post)
- What is the K-nearest neighbors classification model?
- What are the four steps for model training and prediction in scikit-learn?
- How can I apply this pattern to other machine learning models?