forked from espnet/espnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run.sh
executable file
·248 lines (218 loc) · 9.48 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
#!/bin/bash
# Copyright 2017 Johns Hopkins University (Shinji Watanabe)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
. ./path.sh || exit 1;
. ./cmd.sh || exit 1;
# general configuration
backend=pytorch
stage=-1 # start from -1 if you need to start from data download
stop_stage=100
ngpu=1 # number of gpus ("0" uses cpu, otherwise use gpu)
debugmode=1
dumpdir=dump # directory to dump full features
N=0 # number of minibatches to be used (mainly for debugging). "0" uses all minibatches.
verbose=0 # verbose option
resume= # Resume the training from snapshot
# feature configuration
do_delta=false
preprocess_config=conf/specaug.yaml
train_config=conf/train.yaml
lm_config=conf/lm.yaml
decode_config=conf/decode.yaml
# rnnlm related
lm_resume= # specify a snapshot file to resume LM training
lmtag= # tag for managing LMs
# decoding parameter
recog_model=model.acc.best # set a model to be used for decoding: 'model.acc.best' or 'model.loss.best'
n_average=10
# bpemode (unigram or bpe)
nbpe=500
bpemode=unigram
# exp tag
tag="" # tag for managing experiments.
. utils/parse_options.sh || exit 1;
# Set bash to 'debug' mode, it will exit on :
# -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands',
set -e
set -u
set -o pipefail
train_set=train_trim_sp
train_dev=dev_trim
recog_set="dev test"
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
echo "stage -1: Data Download"
local/download_data.sh
fi
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
### Task dependent. You have to make data the following preparation part by yourself.
### But you can utilize Kaldi recipes in most cases
echo "stage 0: Data preparation"
local/prepare_data.sh
for dset in dev test train; do
utils/data/modify_speaker_info.sh --seconds-per-spk-max 180 data/${dset}.orig data/${dset}
done
fi
feat_tr_dir=${dumpdir}/${train_set}/delta${do_delta}; mkdir -p ${feat_tr_dir}
feat_dt_dir=${dumpdir}/${train_dev}/delta${do_delta}; mkdir -p ${feat_dt_dir}
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
### Task dependent. You have to design training and dev sets by yourself.
### But you can utilize Kaldi recipes in most cases
echo "stage 1: Feature Generation"
fbankdir=fbank
# Generate the fbank features; by default 80-dimensional fbanks with pitch on each frame
for x in test dev train; do
steps/make_fbank_pitch.sh --cmd "$train_cmd" --nj 32 --write_utt2num_frames true \
data/${x} exp/make_fbank/${x} ${fbankdir}
utils/fix_data_dir.sh data/${x}
done
# remove utt having > 2000 frames or < 10 frames or
# remove utt having > 400 characters or 0 characters
remove_longshortdata.sh --maxchars 400 data/train data/train_trim
remove_longshortdata.sh --maxchars 400 data/dev data/${train_dev}
# speed-perturbed
utils/perturb_data_dir_speed.sh 0.9 data/train_trim data/temp1
utils/perturb_data_dir_speed.sh 1.0 data/train_trim data/temp2
utils/perturb_data_dir_speed.sh 1.1 data/train_trim data/temp3
utils/combine_data.sh --extra-files utt2uniq data/${train_set} data/temp1 data/temp2 data/temp3
rm -r data/temp1 data/temp2 data/temp3
steps/make_fbank_pitch.sh --cmd "$train_cmd" --nj 32 --write_utt2num_frames true \
data/${train_set} exp/make_fbank/${train_set} ${fbankdir}
utils/fix_data_dir.sh data/${train_set}
# compute global CMVN
compute-cmvn-stats scp:data/${train_set}/feats.scp data/${train_set}/cmvn.ark
# dump features for training
dump.sh --cmd "$train_cmd" --nj 32 --do_delta ${do_delta} \
data/${train_set}/feats.scp data/${train_set}/cmvn.ark exp/dump_feats/train ${feat_tr_dir}
dump.sh --cmd "$train_cmd" --nj 32 --do_delta ${do_delta} \
data/${train_dev}/feats.scp data/${train_set}/cmvn.ark exp/dump_feats/dev ${feat_dt_dir}
for rtask in ${recog_set}; do
feat_recog_dir=${dumpdir}/${rtask}/delta${do_delta}; mkdir -p ${feat_recog_dir}
dump.sh --cmd "$train_cmd" --nj 32 --do_delta ${do_delta} \
data/${rtask}/feats.scp data/${train_set}/cmvn.ark exp/dump_feats/recog/${rtask} \
${feat_recog_dir}
done
fi
dict=data/lang_char/${train_set}_${bpemode}${nbpe}_units.txt
bpemodel=data/lang_char/${train_set}_${bpemode}${nbpe}
echo "dictionary: ${dict}"
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
### Task dependent. You have to check non-linguistic symbols used in the corpus.
echo "stage 2: Dictionary and Json Data Preparation"
mkdir -p data/lang_char/
echo "<unk> 1" > ${dict} # <unk> must be 1, 0 will be used for "blank" in CTC
cut -f 2- -d" " data/${train_set}/text > data/lang_char/input.txt
spm_train --input=data/lang_char/input.txt --vocab_size=${nbpe} --model_type=${bpemode} \
--model_prefix=${bpemodel} --input_sentence_size=100000000
spm_encode --model=${bpemodel}.model --output_format=piece < data/lang_char/input.txt | \
tr ' ' '\n' | sort | uniq | awk '{print $0 " " NR+1}' >> ${dict}
wc -l ${dict}
# make json labels
data2json.sh --feat ${feat_tr_dir}/feats.scp --bpecode ${bpemodel}.model \
data/${train_set} ${dict} > ${feat_tr_dir}/data_${bpemode}${nbpe}.json
data2json.sh --feat ${feat_dt_dir}/feats.scp --bpecode ${bpemodel}.model \
data/${train_dev} ${dict} > ${feat_dt_dir}/data_${bpemode}${nbpe}.json
for rtask in ${recog_set}; do
feat_recog_dir=${dumpdir}/${rtask}/delta${do_delta}
data2json.sh --feat ${feat_recog_dir}/feats.scp --bpecode ${bpemodel}.model \
data/${rtask} ${dict} > ${feat_recog_dir}/data_${bpemode}${nbpe}.json
done
fi
if [ -z ${tag} ]; then
expname=${train_set}_${backend}_$(basename ${train_config%.*})
if ${do_delta}; then
expname=${expname}_delta
fi
if [ -n "${preprocess_config}" ]; then
expname=${expname}_$(basename ${preprocess_config%.*})
fi
else
expname=${train_set}_${backend}_${tag}
fi
expdir=exp/${expname}
mkdir -p ${expdir}
# It takes a few days. If you just want to end-to-end ASR without LM,
# you can skip this and remove --rnnlm option in the recognition (stage 5)
if [ -z ${lmtag} ]; then
lmtag=$(basename ${lm_config%.*})
fi
lmexpname=train_rnnlm_${backend}_${lmtag}_${bpemode}${nbpe}
lmexpdir=exp/${lmexpname}
mkdir -p ${lmexpdir}
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
echo "stage 3: LM Preparation"
lmdatadir=data/local/lm_train_${bpemode}${nbpe}
[ ! -e ${lmdatadir} ] && mkdir -p ${lmdatadir}
gunzip -c db/TEDLIUM_release2/LM/*.en.gz | sed 's/ <\/s>//g' | local/join_suffix.py |\
spm_encode --model=${bpemodel}.model --output_format=piece > ${lmdatadir}/train.txt
cut -f 2- -d" " data/${train_dev}/text | spm_encode --model=${bpemodel}.model --output_format=piece \
> ${lmdatadir}/valid.txt
${cuda_cmd} --gpu ${ngpu} ${lmexpdir}/train.log \
lm_train.py \
--config ${lm_config} \
--ngpu ${ngpu} \
--backend ${backend} \
--verbose 1 \
--outdir ${lmexpdir} \
--tensorboard-dir tensorboard/${lmexpname} \
--train-label ${lmdatadir}/train.txt \
--valid-label ${lmdatadir}/valid.txt \
--resume ${lm_resume} \
--dict ${dict}
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
echo "stage 4: Network Training"
${cuda_cmd} --gpu ${ngpu} ${expdir}/train.log \
asr_train.py \
--ngpu ${ngpu} \
--preprocess-conf ${preprocess_config} \
--config ${train_config} \
--backend ${backend} \
--outdir ${expdir}/results \
--tensorboard-dir tensorboard/${expname} \
--debugmode ${debugmode} \
--dict ${dict} \
--debugdir ${expdir} \
--minibatches ${N} \
--verbose ${verbose} \
--resume ${resume} \
--train-json ${feat_tr_dir}/data_${bpemode}${nbpe}.json \
--valid-json ${feat_dt_dir}/data_${bpemode}${nbpe}.json
fi
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
echo "stage 5: Decoding"
nj=32
if [[ $(get_yaml.py ${train_config} model-module) = *transformer* ]]; then
recog_model=model.last${n_average}.avg.best
average_checkpoints.py --backend ${backend} \
--snapshots ${expdir}/results/snapshot.ep.* \
--out ${expdir}/results/${recog_model} \
--num ${n_average}
fi
pids=() # initialize pids
for rtask in ${recog_set}; do
(
decode_dir=decode_${rtask}_$(basename ${decode_config%.*})
feat_recog_dir=${dumpdir}/${rtask}/delta${do_delta}
# split data
splitjson.py --parts ${nj} ${feat_recog_dir}/data_${bpemode}${nbpe}.json
#### use CPU for decoding
ngpu=0
${decode_cmd} JOB=1:${nj} ${expdir}/${decode_dir}/log/decode.JOB.log \
asr_recog.py \
--config ${decode_config} \
--ngpu ${ngpu} \
--backend ${backend} \
--debugmode ${debugmode} \
--verbose ${verbose} \
--recog-json ${feat_recog_dir}/split${nj}utt/data_${bpemode}${nbpe}.JOB.json \
--result-label ${expdir}/${decode_dir}/data.JOB.json \
--model ${expdir}/results/${recog_model} \
--rnnlm ${lmexpdir}/rnnlm.model.best
score_sclite.sh --bpe ${nbpe} --bpemodel ${bpemodel}.model --wer true ${expdir}/${decode_dir} ${dict}
) &
pids+=($!) # store background pids
done
i=0; for pid in "${pids[@]}"; do wait ${pid} || ((++i)); done
[ ${i} -gt 0 ] && echo "$0: ${i} background jobs are failed." && false
echo "Finished"
fi