diff --git a/test/Transforms/InstCombine/umin-icmp.ll b/test/Transforms/InstCombine/umin-icmp.ll new file mode 100644 index 000000000000..f9d814d0d997 --- /dev/null +++ b/test/Transforms/InstCombine/umin-icmp.ll @@ -0,0 +1,258 @@ +; NOTE: Assertions have been autogenerated by utils/update_test_checks.py +; RUN: opt -S -instcombine < %s | FileCheck %s + +; If we have a umin feeding an unsigned or equality icmp that shares an +; operand with the umin, the compare should always be folded. +; Test all 4 foldable predicates (eq,ne,uge,ult) * 4 commutation +; possibilities for each predicate. Note that folds to true/false +; (predicate is ule/ugt) or folds to an existing instruction should be +; handled by InstSimplify. + +; umin(X, Y) == X --> X <= Y + +define i1 @eq_umin1(i32 %x, i32 %y) { +; CHECK-LABEL: @eq_umin1( +; CHECK-NEXT: [[CMP1:%.*]] = icmp ult i32 %x, %y +; CHECK-NEXT: [[SEL:%.*]] = select i1 [[CMP1]], i32 %x, i32 %y +; CHECK-NEXT: [[CMP2:%.*]] = icmp eq i32 [[SEL]], %x +; CHECK-NEXT: ret i1 [[CMP2]] +; + %cmp1 = icmp ult i32 %x, %y + %sel = select i1 %cmp1, i32 %x, i32 %y + %cmp2 = icmp eq i32 %sel, %x + ret i1 %cmp2 +} + +; Commute min operands. + +define i1 @eq_umin2(i32 %x, i32 %y) { +; CHECK-LABEL: @eq_umin2( +; CHECK-NEXT: [[CMP1:%.*]] = icmp ult i32 %y, %x +; CHECK-NEXT: [[SEL:%.*]] = select i1 [[CMP1]], i32 %y, i32 %x +; CHECK-NEXT: [[CMP2:%.*]] = icmp eq i32 [[SEL]], %x +; CHECK-NEXT: ret i1 [[CMP2]] +; + %cmp1 = icmp ult i32 %y, %x + %sel = select i1 %cmp1, i32 %y, i32 %x + %cmp2 = icmp eq i32 %sel, %x + ret i1 %cmp2 +} + +; Disguise the icmp predicate by commuting the min op to the RHS. + +define i1 @eq_umin3(i32 %a, i32 %y) { +; CHECK-LABEL: @eq_umin3( +; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 +; CHECK-NEXT: [[CMP1:%.*]] = icmp ult i32 [[X]], %y +; CHECK-NEXT: [[SEL:%.*]] = select i1 [[CMP1]], i32 [[X]], i32 %y +; CHECK-NEXT: [[CMP2:%.*]] = icmp eq i32 [[X]], [[SEL]] +; CHECK-NEXT: ret i1 [[CMP2]] +; + %x = add i32 %a, 3 ; thwart complexity-based canonicalization + %cmp1 = icmp ult i32 %x, %y + %sel = select i1 %cmp1, i32 %x, i32 %y + %cmp2 = icmp eq i32 %x, %sel + ret i1 %cmp2 +} + +; Commute min operands. + +define i1 @eq_umin4(i32 %a, i32 %y) { +; CHECK-LABEL: @eq_umin4( +; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 +; CHECK-NEXT: [[CMP1:%.*]] = icmp ugt i32 [[X]], %y +; CHECK-NEXT: [[SEL:%.*]] = select i1 [[CMP1]], i32 %y, i32 [[X]] +; CHECK-NEXT: [[CMP2:%.*]] = icmp eq i32 [[X]], [[SEL]] +; CHECK-NEXT: ret i1 [[CMP2]] +; + %x = add i32 %a, 3 ; thwart complexity-based canonicalization + %cmp1 = icmp ult i32 %y, %x + %sel = select i1 %cmp1, i32 %y, i32 %x + %cmp2 = icmp eq i32 %x, %sel + ret i1 %cmp2 +} + +; umin(X, Y) >= X --> X <= Y + +define i1 @uge_umin1(i32 %x, i32 %y) { +; CHECK-LABEL: @uge_umin1( +; CHECK-NEXT: [[CMP1:%.*]] = icmp ult i32 %x, %y +; CHECK-NEXT: [[SEL:%.*]] = select i1 [[CMP1]], i32 %x, i32 %y +; CHECK-NEXT: [[CMP2:%.*]] = icmp uge i32 [[SEL]], %x +; CHECK-NEXT: ret i1 [[CMP2]] +; + %cmp1 = icmp ult i32 %x, %y + %sel = select i1 %cmp1, i32 %x, i32 %y + %cmp2 = icmp uge i32 %sel, %x + ret i1 %cmp2 +} + +; Commute min operands. + +define i1 @uge_umin2(i32 %x, i32 %y) { +; CHECK-LABEL: @uge_umin2( +; CHECK-NEXT: [[CMP1:%.*]] = icmp ult i32 %y, %x +; CHECK-NEXT: [[SEL:%.*]] = select i1 [[CMP1]], i32 %y, i32 %x +; CHECK-NEXT: [[CMP2:%.*]] = icmp uge i32 [[SEL]], %x +; CHECK-NEXT: ret i1 [[CMP2]] +; + %cmp1 = icmp ult i32 %y, %x + %sel = select i1 %cmp1, i32 %y, i32 %x + %cmp2 = icmp uge i32 %sel, %x + ret i1 %cmp2 +} + +; Disguise the icmp predicate by commuting the min op to the RHS. + +define i1 @uge_umin3(i32 %a, i32 %y) { +; CHECK-LABEL: @uge_umin3( +; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 +; CHECK-NEXT: [[CMP1:%.*]] = icmp ult i32 [[X]], %y +; CHECK-NEXT: [[SEL:%.*]] = select i1 [[CMP1]], i32 [[X]], i32 %y +; CHECK-NEXT: [[CMP2:%.*]] = icmp ule i32 [[X]], [[SEL]] +; CHECK-NEXT: ret i1 [[CMP2]] +; + %x = add i32 %a, 3 ; thwart complexity-based canonicalization + %cmp1 = icmp ult i32 %x, %y + %sel = select i1 %cmp1, i32 %x, i32 %y + %cmp2 = icmp ule i32 %x, %sel + ret i1 %cmp2 +} + +; Commute min operands. + +define i1 @uge_umin4(i32 %a, i32 %y) { +; CHECK-LABEL: @uge_umin4( +; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 +; CHECK-NEXT: [[CMP1:%.*]] = icmp ugt i32 [[X]], %y +; CHECK-NEXT: [[SEL:%.*]] = select i1 [[CMP1]], i32 %y, i32 [[X]] +; CHECK-NEXT: [[CMP2:%.*]] = icmp ule i32 [[X]], [[SEL]] +; CHECK-NEXT: ret i1 [[CMP2]] +; + %x = add i32 %a, 3 ; thwart complexity-based canonicalization + %cmp1 = icmp ult i32 %y, %x + %sel = select i1 %cmp1, i32 %y, i32 %x + %cmp2 = icmp ule i32 %x, %sel + ret i1 %cmp2 +} + +; umin(X, Y) != X --> X > Y + +define i1 @ne_umin1(i32 %x, i32 %y) { +; CHECK-LABEL: @ne_umin1( +; CHECK-NEXT: [[CMP1:%.*]] = icmp ult i32 %x, %y +; CHECK-NEXT: [[SEL:%.*]] = select i1 [[CMP1]], i32 %x, i32 %y +; CHECK-NEXT: [[CMP2:%.*]] = icmp ne i32 [[SEL]], %x +; CHECK-NEXT: ret i1 [[CMP2]] +; + %cmp1 = icmp ult i32 %x, %y + %sel = select i1 %cmp1, i32 %x, i32 %y + %cmp2 = icmp ne i32 %sel, %x + ret i1 %cmp2 +} + +; Commute min operands. + +define i1 @ne_umin2(i32 %x, i32 %y) { +; CHECK-LABEL: @ne_umin2( +; CHECK-NEXT: [[CMP1:%.*]] = icmp ult i32 %y, %x +; CHECK-NEXT: ret i1 [[CMP1]] +; + %cmp1 = icmp ult i32 %y, %x + %sel = select i1 %cmp1, i32 %y, i32 %x + %cmp2 = icmp ne i32 %sel, %x + ret i1 %cmp2 +} + +; Disguise the icmp predicate by commuting the min op to the RHS. + +define i1 @ne_umin3(i32 %a, i32 %y) { +; CHECK-LABEL: @ne_umin3( +; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 +; CHECK-NEXT: [[CMP1:%.*]] = icmp ult i32 [[X]], %y +; CHECK-NEXT: [[SEL:%.*]] = select i1 [[CMP1]], i32 [[X]], i32 %y +; CHECK-NEXT: [[CMP2:%.*]] = icmp ne i32 [[X]], [[SEL]] +; CHECK-NEXT: ret i1 [[CMP2]] +; + %x = add i32 %a, 3 ; thwart complexity-based canonicalization + %cmp1 = icmp ult i32 %x, %y + %sel = select i1 %cmp1, i32 %x, i32 %y + %cmp2 = icmp ne i32 %x, %sel + ret i1 %cmp2 +} + +; Commute min operands. + +define i1 @ne_umin4(i32 %a, i32 %y) { +; CHECK-LABEL: @ne_umin4( +; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 +; CHECK-NEXT: [[CMP1:%.*]] = icmp ugt i32 [[X]], %y +; CHECK-NEXT: ret i1 [[CMP1]] +; + %x = add i32 %a, 3 ; thwart complexity-based canonicalization + %cmp1 = icmp ult i32 %y, %x + %sel = select i1 %cmp1, i32 %y, i32 %x + %cmp2 = icmp ne i32 %x, %sel + ret i1 %cmp2 +} + +; umin(X, Y) < X --> X > Y + +define i1 @ult_umin1(i32 %x, i32 %y) { +; CHECK-LABEL: @ult_umin1( +; CHECK-NEXT: [[CMP1:%.*]] = icmp ult i32 %x, %y +; CHECK-NEXT: [[SEL:%.*]] = select i1 [[CMP1]], i32 %x, i32 %y +; CHECK-NEXT: [[CMP2:%.*]] = icmp ult i32 [[SEL]], %x +; CHECK-NEXT: ret i1 [[CMP2]] +; + %cmp1 = icmp ult i32 %x, %y + %sel = select i1 %cmp1, i32 %x, i32 %y + %cmp2 = icmp ult i32 %sel, %x + ret i1 %cmp2 +} + +; Commute min operands. + +define i1 @ult_umin2(i32 %x, i32 %y) { +; CHECK-LABEL: @ult_umin2( +; CHECK-NEXT: [[CMP1:%.*]] = icmp ult i32 %y, %x +; CHECK-NEXT: ret i1 [[CMP1]] +; + %cmp1 = icmp ult i32 %y, %x + %sel = select i1 %cmp1, i32 %y, i32 %x + %cmp2 = icmp ult i32 %sel, %x + ret i1 %cmp2 +} + +; Disguise the icmp predicate by commuting the min op to the RHS. + +define i1 @ult_umin3(i32 %a, i32 %y) { +; CHECK-LABEL: @ult_umin3( +; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 +; CHECK-NEXT: [[CMP1:%.*]] = icmp ult i32 [[X]], %y +; CHECK-NEXT: [[SEL:%.*]] = select i1 [[CMP1]], i32 [[X]], i32 %y +; CHECK-NEXT: [[CMP2:%.*]] = icmp ugt i32 [[X]], [[SEL]] +; CHECK-NEXT: ret i1 [[CMP2]] +; + %x = add i32 %a, 3 ; thwart complexity-based canonicalization + %cmp1 = icmp ult i32 %x, %y + %sel = select i1 %cmp1, i32 %x, i32 %y + %cmp2 = icmp ugt i32 %x, %sel + ret i1 %cmp2 +} + +; Commute min operands. + +define i1 @ult_umin4(i32 %a, i32 %y) { +; CHECK-LABEL: @ult_umin4( +; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3 +; CHECK-NEXT: [[CMP1:%.*]] = icmp ugt i32 [[X]], %y +; CHECK-NEXT: ret i1 [[CMP1]] +; + %x = add i32 %a, 3 ; thwart complexity-based canonicalization + %cmp1 = icmp ult i32 %y, %x + %sel = select i1 %cmp1, i32 %y, i32 %x + %cmp2 = icmp ugt i32 %x, %sel + ret i1 %cmp2 +} +