forked from pytorch/FBGEMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFP16Benchmark.cc
267 lines (238 loc) · 6.13 KB
/
FP16Benchmark.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/*
* Copyright (c) Facebook, Inc. and its affiliates.
* All rights reserved.
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <chrono>
#include <cmath>
#include <random>
#ifdef USE_MKL
#include <mkl.h>
#endif
#ifdef USE_BLAS
#include <cblas.h>
#endif
#ifdef _OPENMP
#include <omp.h>
#endif
#include "AlignedVec.h"
#include "bench/BenchUtils.h"
#include "fbgemm/FbgemmFP16.h"
using namespace std;
using namespace fbgemm;
void performance_test() {
// cache flush
bool flush = true;
std::vector<char> llc;
if (flush) {
llc.resize(64L * 1024L * 1024L, 1.0);
}
float alpha = 1.f, beta = 1.f;
matrix_op_t btran = matrix_op_t::Transpose;
using btype = float16;
#define dataset 1
#if dataset == 1
const int NITER = (flush) ? 10 : 100;
std::vector<std::vector<int>> shapes;
for (auto m = 1; m < 120; m++) {
// shapes.push_back({m, 128, 512});
shapes.push_back({m, 512, 512});
}
#elif dataset == 2
const int NITER = (flush) ? 10 : 100;
#include "shapes_dataset.h"
#else
flush = false;
constexpr int NITER = 1;
std::vector<std::vector<int>> shapes;
std::random_device r;
std::default_random_engine generator(r());
std::uniform_int_distribution<int> dm(1, 100);
std::uniform_int_distribution<int> dnk(1, 1024);
for (int i = 0; i < 1000; i++) {
int m = dm(generator);
int n = dnk(generator);
int k = dnk(generator);
shapes.push_back({m, n, k});
}
#endif
std::string type;
double gflops, gbs, ttot;
for (auto s : shapes) {
int m = s[0];
int n = s[1];
int k = s[2];
aligned_vector<float> C_ref(m * n, 1.f);
aligned_vector<float> C_fb(m * n, NAN);
// initialize with small numbers
aligned_vector<int> Aint(m * k);
randFill(Aint, 0, 4);
aligned_vector<float> A(Aint.begin(), Aint.end());
aligned_vector<int> Bint(k * n);
randFill(Bint, 0, 4);
aligned_vector<float> B(Bint.begin(), Bint.end());
PackedGemmMatrixFP16 Bp(btran, k, n, alpha, B.data());
if (beta != 0.0f) {
aligned_vector<int> Cint(C_ref.size());
randFill(Cint, 0, 4);
C_ref.assign(Cint.begin(), Cint.end());
C_fb = C_ref;
}
double nflops = 2.0 * (double)m * (double)n * (double)k * (double)NITER;
double nbytes = (4.0 * (double)m * (double)k + 2.0 * (double)k * (double)n +
4.0 * (double)m * (double)n) *
NITER;
// warm up MKL and fbgemm
// check correctness at the same time
for (auto w = 0; w < 3; w++) {
#if defined(USE_MKL) || defined(USE_BLAS)
cblas_sgemm(
CblasRowMajor,
CblasNoTrans,
btran == matrix_op_t::Transpose ? CblasTrans : CblasNoTrans,
m,
n,
k,
alpha,
A.data(),
k,
B.data(),
(btran == matrix_op_t::NoTranspose) ? n : k,
beta,
C_ref.data(),
n);
#endif
#ifdef _OPENMP
#pragma omp parallel
#endif
{
int num_threads = fbgemm_get_num_threads();
int tid = fbgemm_get_thread_num();
cblas_gemm_compute(
matrix_op_t::NoTranspose,
m,
A.data(),
Bp,
beta,
C_fb.data(),
tid,
num_threads);
}
#if defined(USE_MKL) || defined(USE_BLAS)
// Compare results
for (auto i = 0; i < C_ref.size(); i++) {
if (std::abs(C_ref[i] - C_fb[i]) > 1e-3) {
fprintf(
stderr,
"Error: too high diff between fp32 ref %f and fp16 %f\n",
C_ref[i],
C_fb[i]);
return;
}
}
#endif
}
chrono::time_point<chrono::system_clock> t_begin, t_end;
#if defined(USE_MKL) || defined(USE_BLAS)
// Gold via MKL sgemm
#if defined(USE_MKL)
type = "MKL_FP32";
#else
type = "BLAS_FP32";
#endif
ttot = 0;
for (auto it = -3; it < NITER; it++) {
if (flush) {
for (auto i = 0; i < llc.size(); i++) {
llc[i]++;
}
}
t_begin = chrono::system_clock::now();
cblas_sgemm(
CblasRowMajor,
CblasNoTrans,
btran == matrix_op_t::Transpose ? CblasTrans : CblasNoTrans,
m,
n,
k,
alpha,
A.data(),
k,
B.data(),
(btran == matrix_op_t::NoTranspose) ? n : k,
beta,
C_ref.data(),
n);
t_end = chrono::system_clock::now();
if (it >= 0) {
double dt = chrono::duration<double>(t_end - t_begin).count();
ttot += dt;
}
}
gflops = nflops / ttot / 1e9;
gbs = nbytes / ttot / 1e9;
printf(
"\n%30s m = %5d n = %5d k = %5d Gflops = %8.4lf GBytes = %8.4lf\n",
type.c_str(),
m,
n,
k,
gflops,
gbs);
((volatile char*)(llc.data()));
#endif
type = "FBP_" + std::string(typeid(btype).name());
ttot = 0;
for (auto it = -3; it < NITER; it++) {
if (flush) {
for (auto i = 0; i < llc.size(); i++) {
llc[i]++;
}
}
t_begin = chrono::system_clock::now();
#ifdef _OPENMP
#pragma omp parallel
#endif
{
int num_threads = fbgemm_get_num_threads();
int tid = fbgemm_get_thread_num();
cblas_gemm_compute(
matrix_op_t::NoTranspose,
m,
A.data(),
Bp,
beta,
C_fb.data(),
tid,
num_threads);
}
t_end = chrono::system_clock::now();
if (it >= 0) {
double dt = chrono::duration<double>(t_end - t_begin).count();
ttot += dt;
}
}
gflops = nflops / ttot / 1e9;
gbs = nbytes / ttot / 1e9;
printf(
"%30s m = %5d n = %5d k = %5d Gflops = %8.4lf GBytes = %8.4lf\n",
type.c_str(),
m,
n,
k,
gflops,
gbs);
((volatile char*)(llc.data()));
}
}
int main(int /*argc*/, char** /*argv*/) {
#ifdef _OPENMP
// Use 1 thread unless OMP_NUM_THREADS is explicit set.
const char* val = getenv("OMP_NUM_THREADS");
if (val == nullptr || !*val) {
omp_set_num_threads(1);
}
#endif
performance_test();
}