forked from MasteringOpenCV/code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTriangulation.cpp
executable file
·237 lines (200 loc) · 7.36 KB
/
Triangulation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/*****************************************************************************
* ExploringSfMWithOpenCV
******************************************************************************
* by Roy Shilkrot, 5th Dec 2012
* http://www.morethantechnical.com/
******************************************************************************
* Ch4 of the book "Mastering OpenCV with Practical Computer Vision Projects"
* Copyright Packt Publishing 2012.
* http://www.packtpub.com/cool-projects-with-opencv/book
*****************************************************************************/
#include "Triangulation.h"
#include <iostream>
using namespace std;
using namespace cv;
#undef __SFM__DEBUG__
/**
From "Triangulation", Hartley, R.I. and Sturm, P., Computer vision and image understanding, 1997
*/
Mat_<double> LinearLSTriangulation(Point3d u, //homogenous image point (u,v,1)
Matx34d P, //camera 1 matrix
Point3d u1, //homogenous image point in 2nd camera
Matx34d P1 //camera 2 matrix
)
{
//build matrix A for homogenous equation system Ax = 0
//assume X = (x,y,z,1), for Linear-LS method
//which turns it into a AX = B system, where A is 4x3, X is 3x1 and B is 4x1
// cout << "u " << u <<", u1 " << u1 << endl;
// Matx<double,6,4> A; //this is for the AX=0 case, and with linear dependence..
// A(0) = u.x*P(2)-P(0);
// A(1) = u.y*P(2)-P(1);
// A(2) = u.x*P(1)-u.y*P(0);
// A(3) = u1.x*P1(2)-P1(0);
// A(4) = u1.y*P1(2)-P1(1);
// A(5) = u1.x*P(1)-u1.y*P1(0);
// Matx43d A; //not working for some reason...
// A(0) = u.x*P(2)-P(0);
// A(1) = u.y*P(2)-P(1);
// A(2) = u1.x*P1(2)-P1(0);
// A(3) = u1.y*P1(2)-P1(1);
Matx43d A(u.x*P(2,0)-P(0,0), u.x*P(2,1)-P(0,1), u.x*P(2,2)-P(0,2),
u.y*P(2,0)-P(1,0), u.y*P(2,1)-P(1,1), u.y*P(2,2)-P(1,2),
u1.x*P1(2,0)-P1(0,0), u1.x*P1(2,1)-P1(0,1), u1.x*P1(2,2)-P1(0,2),
u1.y*P1(2,0)-P1(1,0), u1.y*P1(2,1)-P1(1,1), u1.y*P1(2,2)-P1(1,2)
);
Matx41d B(-(u.x*P(2,3) -P(0,3)),
-(u.y*P(2,3) -P(1,3)),
-(u1.x*P1(2,3) -P1(0,3)),
-(u1.y*P1(2,3) -P1(1,3)));
Mat_<double> X;
solve(A,B,X,DECOMP_SVD);
return X;
}
/**
From "Triangulation", Hartley, R.I. and Sturm, P., Computer vision and image understanding, 1997
*/
Mat_<double> IterativeLinearLSTriangulation(Point3d u, //homogenous image point (u,v,1)
Matx34d P, //camera 1 matrix
Point3d u1, //homogenous image point in 2nd camera
Matx34d P1 //camera 2 matrix
) {
double wi = 1, wi1 = 1;
Mat_<double> X(4,1);
Mat_<double> X_ = LinearLSTriangulation(u,P,u1,P1);
X(0) = X_(0); X(1) = X_(1); X(2) = X_(2); X(3) = 1.0;
for (int i=0; i<10; i++) { //Hartley suggests 10 iterations at most
//recalculate weights
double p2x = Mat_<double>(Mat_<double>(P).row(2)*X)(0);
double p2x1 = Mat_<double>(Mat_<double>(P1).row(2)*X)(0);
//breaking point
if(fabsf(wi - p2x) <= EPSILON && fabsf(wi1 - p2x1) <= EPSILON) break;
wi = p2x;
wi1 = p2x1;
//reweight equations and solve
Matx43d A((u.x*P(2,0)-P(0,0))/wi, (u.x*P(2,1)-P(0,1))/wi, (u.x*P(2,2)-P(0,2))/wi,
(u.y*P(2,0)-P(1,0))/wi, (u.y*P(2,1)-P(1,1))/wi, (u.y*P(2,2)-P(1,2))/wi,
(u1.x*P1(2,0)-P1(0,0))/wi1, (u1.x*P1(2,1)-P1(0,1))/wi1, (u1.x*P1(2,2)-P1(0,2))/wi1,
(u1.y*P1(2,0)-P1(1,0))/wi1, (u1.y*P1(2,1)-P1(1,1))/wi1, (u1.y*P1(2,2)-P1(1,2))/wi1
);
Mat_<double> B = (Mat_<double>(4,1) << -(u.x*P(2,3) -P(0,3))/wi,
-(u.y*P(2,3) -P(1,3))/wi,
-(u1.x*P1(2,3) -P1(0,3))/wi1,
-(u1.y*P1(2,3) -P1(1,3))/wi1
);
solve(A,B,X_,DECOMP_SVD);
X(0) = X_(0); X(1) = X_(1); X(2) = X_(2); X(3) = 1.0;
}
return X;
}
//Triagulate points
double TriangulatePoints(const vector<KeyPoint>& pt_set1,
const vector<KeyPoint>& pt_set2,
const Mat& K,
const Mat& Kinv,
const Mat& distcoeff,
const Matx34d& P,
const Matx34d& P1,
vector<CloudPoint>& pointcloud,
vector<KeyPoint>& correspImg1Pt)
{
#ifdef __SFM__DEBUG__
vector<double> depths;
#endif
// pointcloud.clear();
correspImg1Pt.clear();
Matx44d P1_(P1(0,0),P1(0,1),P1(0,2),P1(0,3),
P1(1,0),P1(1,1),P1(1,2),P1(1,3),
P1(2,0),P1(2,1),P1(2,2),P1(2,3),
0, 0, 0, 1);
Matx44d P1inv(P1_.inv());
cout << "Triangulating...";
double t = getTickCount();
vector<double> reproj_error;
unsigned int pts_size = pt_set1.size();
#if 0
//Using OpenCV's triangulation
//convert to Point2f
vector<Point2f> _pt_set1_pt,_pt_set2_pt;
KeyPointsToPoints(pt_set1,_pt_set1_pt);
KeyPointsToPoints(pt_set2,_pt_set2_pt);
//undistort
Mat pt_set1_pt,pt_set2_pt;
undistortPoints(_pt_set1_pt, pt_set1_pt, K, distcoeff);
undistortPoints(_pt_set2_pt, pt_set2_pt, K, distcoeff);
//triangulate
Mat pt_set1_pt_2r = pt_set1_pt.reshape(1, 2);
Mat pt_set2_pt_2r = pt_set2_pt.reshape(1, 2);
Mat pt_3d_h(1,pts_size,CV_32FC4);
cv::triangulatePoints(P,P1,pt_set1_pt_2r,pt_set2_pt_2r,pt_3d_h);
//calculate reprojection
vector<Point3f> pt_3d;
convertPointsHomogeneous(pt_3d_h.reshape(4, 1), pt_3d);
cv::Mat_<double> R = (cv::Mat_<double>(3,3) << P(0,0),P(0,1),P(0,2), P(1,0),P(1,1),P(1,2), P(2,0),P(2,1),P(2,2));
Vec3d rvec; Rodrigues(R ,rvec);
Vec3d tvec(P(0,3),P(1,3),P(2,3));
vector<Point2f> reprojected_pt_set1;
projectPoints(pt_3d,rvec,tvec,K,distcoeff,reprojected_pt_set1);
for (unsigned int i=0; i<pts_size; i++) {
CloudPoint cp;
cp.pt = pt_3d[i];
pointcloud.push_back(cp);
reproj_error.push_back(norm(_pt_set1_pt[i]-reprojected_pt_set1[i]));
}
#else
Mat_<double> KP1 = K * Mat(P1);
#pragma omp parallel for num_threads(1)
for (int i=0; i<pts_size; i++) {
Point2f kp = pt_set1[i].pt;
Point3d u(kp.x,kp.y,1.0);
Mat_<double> um = Kinv * Mat_<double>(u);
u.x = um(0); u.y = um(1); u.z = um(2);
Point2f kp1 = pt_set2[i].pt;
Point3d u1(kp1.x,kp1.y,1.0);
Mat_<double> um1 = Kinv * Mat_<double>(u1);
u1.x = um1(0); u1.y = um1(1); u1.z = um1(2);
Mat_<double> X = IterativeLinearLSTriangulation(u,P,u1,P1);
// cout << "3D Point: " << X << endl;
// Mat_<double> x = Mat(P1) * X;
// cout << "P1 * Point: " << x << endl;
// Mat_<double> xPt = (Mat_<double>(3,1) << x(0),x(1),x(2));
// cout << "Point: " << xPt << endl;
Mat_<double> xPt_img = KP1 * X; //reproject
// cout << "Point * K: " << xPt_img << endl;
Point2f xPt_img_(xPt_img(0)/xPt_img(2),xPt_img(1)/xPt_img(2));
#pragma omp critical
{
double reprj_err = norm(xPt_img_-kp1);
reproj_error.push_back(reprj_err);
CloudPoint cp;
cp.pt = Point3d(X(0),X(1),X(2));
cp.reprojection_error = reprj_err;
pointcloud.push_back(cp);
correspImg1Pt.push_back(pt_set1[i]);
#ifdef __SFM__DEBUG__
depths.push_back(X(2));
#endif
}
}
#endif
Scalar mse = mean(reproj_error);
t = ((double)getTickCount() - t)/getTickFrequency();
cout << "Done. ("<<pointcloud.size()<<"points, " << t <<"s, mean reproj err = " << mse[0] << ")"<< endl;
//show "range image"
#ifdef __SFM__DEBUG__
{
double minVal,maxVal;
minMaxLoc(depths, &minVal, &maxVal);
Mat tmp(240,320,CV_8UC3,Scalar(0,0,0)); //cvtColor(img_1_orig, tmp, CV_BGR2HSV);
for (unsigned int i=0; i<pointcloud.size(); i++) {
double _d = MAX(MIN((pointcloud[i].z-minVal)/(maxVal-minVal),1.0),0.0);
circle(tmp, correspImg1Pt[i].pt, 1, Scalar(255 * (1.0-(_d)),255,255), CV_FILLED);
}
cvtColor(tmp, tmp, CV_HSV2BGR);
imshow("Depth Map", tmp);
waitKey(0);
destroyWindow("Depth Map");
}
#endif
return mse[0];
}