forked from mattymo/fuelweb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnetcheck.py
331 lines (284 loc) · 11 KB
/
netcheck.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
# Copyright 2013 Mirantis, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
#!/usr/bin/env python
import random
import logging
import itertools
logging.basicConfig()
logger = logging.getLogger()
class Vertex(object):
def __init__(self, node, interface):
self.node = node
self.interface = interface
def __str__(self):
return "<Vtx: %s.%s>" % (self.node, self.interface)
def __repr__(self):
return self.__str__()
def __eq__(self, other):
return self.node == other.node and self.interface == other.interface
def __ne__(self, other):
return self.node != other.node or self.interface != other.interface
def __hash__(self):
return hash(str(self))
class Arc(object):
def __init__(self, vertex_a, vertex_b):
self.arc = (vertex_a, vertex_b)
def __str__(self):
return "<Arc: %s>" % (self.arc,)
def __repr__(self):
return self.__str__()
def __getitem__(self, i):
return self.arc[i]
def __eq__(self, other):
l = map(lambda x, y: x == y, self.arc, other.arc)
return bool(filter(lambda x: x, l))
def __ne__(self, other):
l = map(lambda x, y: x != y, self.arc, other.arc)
return bool(filter(lambda x: x, l))
def __hash__(self):
return hash(str(self))
def invert(self):
return Arc(self.arc[1], self.arc[0])
class NetChecker(object):
def __init__(self, nodes, arcs):
self.nodes = nodes
self.arcs = arcs
logger.debug("Init: got %d nodes and %d arcs", len(nodes), len(self.arcs))
@staticmethod
def _invert_arc(arc):
return arc[1], arc[0]
@staticmethod
def _create_arc(a_vertex, b_vertex):
return a_vertex, b_vertex
@staticmethod
def _disassm_vertex(vertex):
index = vertex.find('.')
node = vertex[:index]
interface = vertex[index + 1:]
return node, interface
@staticmethod
def _assm_vertex(node, interface):
return "%s.%s" % (str(node), str(interface))
def get_topos(self):
""" Main method to collect all possible altermatives of
interconnection.
"""
topos = []
vertices = set([i[0] for i in self.arcs])
logger.debug("Get_choices: start with %d vertices", len(vertices))
while vertices:
logger.debug("")
vertex = vertices.pop()
logger.debug("Get_choices: entry vertex is %s", vertex)
good_topos, visited_vertices = self._calc_topo(vertex)
logger.debug("Get_choices: getted %d good_topos",
len(good_topos))
logger.debug("Get_choices: getted %d visited_vertices: %s",
len(visited_vertices), visited_vertices)
topos.extend(good_topos)
vertices.difference_update(visited_vertices)
logger.debug("Get_choices: %d untracked vertices left: %s",
len(vertices), vertices)
return self._uniq_topos(topos)
def _calc_topo(self, start_vertex):
topos = []
visited_vertices = set()
def extend_arcs_to_check(arcs_to_check, arcs):
for failed_v, ignored_v in arcs:
existed_arcs = filter(
lambda x: x[0] == failed_v, arcs_to_check)
if existed_arcs:
existed_arc = existed_arcs[0]
existed_arc[1].append(ignored_v)
else:
arcs_to_check.append((failed_v, [ignored_v]))
# arcs_to_check consists of arcs (x, y) where
# x - failed vertex,
# y - list of vertices which should be ignored.
arcs_to_check = [(start_vertex, [])]
for fv, ignored_vertices in arcs_to_check:
found_vertices = [fv]
failed_arcs = []
for vertex in found_vertices:
neighbors = self._get_neighbors(vertex)
logger.debug("_calc_topo: for vtx %s a neigbors found: %s",
vertex, neighbors)
new_vertices, absent_vertices = self._diff_lists(
found_vertices, ignored_vertices, neighbors
)
logger.debug("_calc_topo: new vtx found: %s", new_vertices)
logger.debug("_calc_topo: absent_vertices is %s",
absent_vertices)
if absent_vertices:
for v in absent_vertices:
failed_arc = (v, vertex)
if failed_arc not in failed_arcs:
failed_arcs.append(failed_arc)
found_vertices.extend(new_vertices)
failed_vertices = [x[0] for x in failed_arcs]
topo = self._validate_topo(found_vertices, failed_vertices)
visited_vertices.update(found_vertices)
visited_vertices.update(failed_vertices)
if topo:
topos.append(topo)
extend_arcs_to_check(arcs_to_check, failed_arcs)
return topos, visited_vertices
def _get_neighbors(self, vertex):
arcs = filter(
lambda x: x[0] == vertex,
self.arcs)
return [x[1] for x in arcs]
@staticmethod
def _diff_lists(found_vertices, ignored_vertices, neighbours):
new_vertices = []
absent_vertices = []
for n in found_vertices:
if n in neighbours:
neighbours.remove(n)
else:
absent_vertices.append(n)
new_vertices = [n for n in neighbours if n not in ignored_vertices]
return new_vertices, absent_vertices
def _validate_topo(self, found_v, failed_v):
logger.debug("_validate_topo: found_vertices is: %s", found_v)
logger.debug("_validate_topo: failed_vertices is: %s", failed_v)
topo = {}
for v in found_v:
if v in failed_v:
continue
node, interface = self._disassm_vertex(v)
interfaces = topo.get(node)
if interfaces:
interfaces.append(interface)
else:
topo[node] = [interface]
if set(self.nodes) != set(topo.keys()):
return None
for l in topo.values():
l.sort()
return topo
def _uniq_topos(self, topos):
def isincluded(topo, topos):
for at in topos:
included = True
for n in self.nodes:
if not set(topo[n]).issubset(set(at[n])):
included = False
if included:
return True
return False
copy = []
logger.debug("_uniq_topos: topos is %s" % topos)
for t in topos:
logger.debug("_uniq_topos: now testing: %s" % t)
if not isincluded(t, [i for i in topos if id(i) != id(t)]):
copy.append(t)
return copy
class ClassbasedNetChecker(NetChecker):
@staticmethod
def _invert_arc(arc):
return arc.invert()
@staticmethod
def _create_arc(a_vertex, b_vertex):
return Arc(a_vertex, b_vertex)
@staticmethod
def _disassm_vertex(vertex):
return vertex.node, vertex.interface
@staticmethod
def _assm_vertex(node, interface):
return Vertex(node, interface)
def generateFullMesh(nodes, interfaces, Klass, stability=1.0):
A = []
vertices = itertools.product(nodes, interfaces, nodes, interfaces)
for n1, i1, n2, i2 in vertices:
# Drop some arcs if stability < 1.0
if stability == 1.0 or random.random() < stability:
a_vertex = Klass._assm_vertex(n1, i1)
b_vertex = Klass._assm_vertex(n2, i2)
arc = Klass._create_arc(a_vertex, b_vertex)
A.append(arc)
logger.debug("generateArcs: %d arcs generated", len(A))
return A
def generateMesh(nodes1, ifaces1, nodes2, ifaces2, Klass, stability=1.0):
A = []
vertices = itertools.product(nodes1, ifaces1, nodes2, ifaces2)
for n1, i1, n2, i2 in vertices:
# Drop some arcs if stability < 1.0
if stability == 1.0 or random.random() < stability:
a_vertex = Klass._assm_vertex(n1, i1)
b_vertex = Klass._assm_vertex(n2, i2)
arc = Klass._create_arc(a_vertex, b_vertex)
A.append(arc)
logger.debug("generateArcs: %d arcs generated", len(A))
return A
def printChoice(choice, step=4):
def printlist(l, indent=0, step=2):
print '%s[' % (' ' * indent)
for i in l:
if type(i) is dict:
print '%s-' % (' ' * indent)
printdict(i, indent + step, step)
elif type(i) in (list, tuple):
printlist(i, indent + step, step)
else:
print '%s- %s' % (' ' * indent, str(i))
print '%s]' % (' ' * indent)
def printdict(d, indent=0, step=2):
for k, v in d.iteritems():
if type(v) is dict:
print '%s%s:' % (' ' * indent, str(k))
printdict(v, indent + step, step)
elif type(v) in (list, tuple):
print '%s%s:' % (' ' * indent, str(k))
printlist(v, indent + step, step)
else:
print '%s%s: %s' % (' ' * indent, str(k), str(v))
if type(choice) is dict:
printdict(choice, step=step)
elif type(choice) is list:
printlist(choice, step=step)
else:
print choice
print ""
nodes = ['s1', 's2', 's3', 's4']
interfaces = ['i0', 'i1', 'i2', 'i3']
logger.setLevel(logging.DEBUG)
Klass = ClassbasedNetChecker
Klass = NetChecker
arcs = []
# arcs.extend(generateFullMesh(nodes[:2], interfaces[:2], Klass, 0.9))
# #arcs.extend(generateFullMesh(nodes[:2], interfaces[2:], Klass))
# arcs.extend(generateMesh(nodes[2:3], interfaces[0:1],
# nodes[:3], interfaces[0:2], Klass))
# arcs.extend(generateMesh(nodes[:2], interfaces[0:2],
# nodes[2:3], interfaces[0:1], Klass))
# netcheck = Klass(nodes[:3], arcs)
nodes = [str(i) for i in xrange(200)]
interfaces = [str(i) for i in xrange(4)]
arcs = generateFullMesh(nodes, interfaces, Klass)
netcheck = Klass(nodes, arcs)
logger.setLevel(logging.INFO)
choices = netcheck.get_topos()
#printChoice(arcs)
# print ""
# for i in xrange(len(choices)):
# print "\n---- Choice number %d: ----\n" % (i + 1)
# printChoice(choices[i])
if not choices:
print "No choices found"
else:
print "%d choices found" % len(choices)
print ""
#import time
#time.sleep(5)