forked from KwaiVGI/LivePortrait
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgradio_pipeline.py
663 lines (593 loc) Β· 33.4 KB
/
gradio_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
# coding: utf-8
"""
Pipeline for gradio
"""
import os.path as osp
import os
import cv2
from rich.progress import track
import gradio as gr
import numpy as np
import torch
from .config.argument_config import ArgumentConfig
from .live_portrait_pipeline import LivePortraitPipeline
from .live_portrait_pipeline_animal import LivePortraitPipelineAnimal
from .utils.io import load_img_online, load_video, resize_to_limit
from .utils.filter import smooth
from .utils.rprint import rlog as log
from .utils.crop import prepare_paste_back, paste_back
from .utils.camera import get_rotation_matrix
from .utils.video import get_fps, has_audio_stream, concat_frames, images2video, add_audio_to_video
from .utils.helper import is_square_video, mkdir, dct2device, basename
from .utils.retargeting_utils import calc_eye_close_ratio, calc_lip_close_ratio
def update_args(args, user_args):
"""update the args according to user inputs
"""
for k, v in user_args.items():
if hasattr(args, k):
setattr(args, k, v)
return args
class GradioPipeline(LivePortraitPipeline):
"""gradio for human
"""
def __init__(self, inference_cfg, crop_cfg, args: ArgumentConfig):
super().__init__(inference_cfg, crop_cfg)
# self.live_portrait_wrapper = self.live_portrait_wrapper
self.args = args
@torch.no_grad()
def update_delta_new_eyeball_direction(self, eyeball_direction_x, eyeball_direction_y, delta_new, **kwargs):
if eyeball_direction_x > 0:
delta_new[0, 11, 0] += eyeball_direction_x * 0.0007
delta_new[0, 15, 0] += eyeball_direction_x * 0.001
else:
delta_new[0, 11, 0] += eyeball_direction_x * 0.001
delta_new[0, 15, 0] += eyeball_direction_x * 0.0007
delta_new[0, 11, 1] += eyeball_direction_y * -0.001
delta_new[0, 15, 1] += eyeball_direction_y * -0.001
blink = -eyeball_direction_y / 2.
delta_new[0, 11, 1] += blink * -0.001
delta_new[0, 13, 1] += blink * 0.0003
delta_new[0, 15, 1] += blink * -0.001
delta_new[0, 16, 1] += blink * 0.0003
return delta_new
@torch.no_grad()
def update_delta_new_smile(self, smile, delta_new, **kwargs):
delta_new[0, 20, 1] += smile * -0.01
delta_new[0, 14, 1] += smile * -0.02
delta_new[0, 17, 1] += smile * 0.0065
delta_new[0, 17, 2] += smile * 0.003
delta_new[0, 13, 1] += smile * -0.00275
delta_new[0, 16, 1] += smile * -0.00275
delta_new[0, 3, 1] += smile * -0.0035
delta_new[0, 7, 1] += smile * -0.0035
return delta_new
@torch.no_grad()
def update_delta_new_wink(self, wink, delta_new, **kwargs):
delta_new[0, 11, 1] += wink * 0.001
delta_new[0, 13, 1] += wink * -0.0003
delta_new[0, 17, 0] += wink * 0.0003
delta_new[0, 17, 1] += wink * 0.0003
delta_new[0, 3, 1] += wink * -0.0003
return delta_new
@torch.no_grad()
def update_delta_new_eyebrow(self, eyebrow, delta_new, **kwargs):
if eyebrow > 0:
delta_new[0, 1, 1] += eyebrow * 0.001
delta_new[0, 2, 1] += eyebrow * -0.001
else:
delta_new[0, 1, 0] += eyebrow * -0.001
delta_new[0, 2, 0] += eyebrow * 0.001
delta_new[0, 1, 1] += eyebrow * 0.0003
delta_new[0, 2, 1] += eyebrow * -0.0003
return delta_new
@torch.no_grad()
def update_delta_new_lip_variation_zero(self, lip_variation_zero, delta_new, **kwargs):
delta_new[0, 19, 0] += lip_variation_zero
return delta_new
@torch.no_grad()
def update_delta_new_lip_variation_one(self, lip_variation_one, delta_new, **kwargs):
delta_new[0, 14, 1] += lip_variation_one * 0.001
delta_new[0, 3, 1] += lip_variation_one * -0.0005
delta_new[0, 7, 1] += lip_variation_one * -0.0005
delta_new[0, 17, 2] += lip_variation_one * -0.0005
return delta_new
@torch.no_grad()
def update_delta_new_lip_variation_two(self, lip_variation_two, delta_new, **kwargs):
delta_new[0, 20, 2] += lip_variation_two * -0.001
delta_new[0, 20, 1] += lip_variation_two * -0.001
delta_new[0, 14, 1] += lip_variation_two * -0.001
return delta_new
@torch.no_grad()
def update_delta_new_lip_variation_three(self, lip_variation_three, delta_new, **kwargs):
delta_new[0, 19, 1] += lip_variation_three * 0.001
delta_new[0, 19, 2] += lip_variation_three * 0.0001
delta_new[0, 17, 1] += lip_variation_three * -0.0001
return delta_new
@torch.no_grad()
def update_delta_new_mov_x(self, mov_x, delta_new, **kwargs):
delta_new[0, 5, 0] += mov_x
return delta_new
@torch.no_grad()
def update_delta_new_mov_y(self, mov_y, delta_new, **kwargs):
delta_new[0, 5, 1] += mov_y
return delta_new
@torch.no_grad()
def execute_video(
self,
input_source_image_path=None,
input_source_video_path=None,
input_driving_video_path=None,
input_driving_image_path=None,
input_driving_video_pickle_path=None,
flag_relative_input=True,
flag_do_crop_input=True,
flag_remap_input=True,
flag_stitching_input=True,
animation_region="all",
driving_option_input="pose-friendly",
driving_multiplier=1.0,
flag_crop_driving_video_input=True,
# flag_video_editing_head_rotation=False,
scale=2.3,
vx_ratio=0.0,
vy_ratio=-0.125,
scale_crop_driving_video=2.2,
vx_ratio_crop_driving_video=0.0,
vy_ratio_crop_driving_video=-0.1,
driving_smooth_observation_variance=3e-7,
tab_selection=None,
v_tab_selection=None
):
""" for video-driven portrait animation or video editing
"""
if tab_selection == 'Image':
input_source_path = input_source_image_path
elif tab_selection == 'Video':
input_source_path = input_source_video_path
else:
input_source_path = input_source_image_path
if v_tab_selection == 'Video':
input_driving_path = input_driving_video_path
elif v_tab_selection == 'Image':
input_driving_path = input_driving_image_path
elif v_tab_selection == 'Pickle':
input_driving_path = input_driving_video_pickle_path
else:
input_driving_path = input_driving_video_path
if input_source_path is not None and input_driving_path is not None:
if osp.exists(input_driving_path) and v_tab_selection == 'Video' and is_square_video(input_driving_path) is False:
flag_crop_driving_video_input = True
log("The driving video is not square, it will be cropped to square automatically.")
gr.Info("The driving video is not square, it will be cropped to square automatically.", duration=2)
args_user = {
'source': input_source_path,
'driving': input_driving_path,
'flag_relative_motion': flag_relative_input,
'flag_do_crop': flag_do_crop_input,
'flag_pasteback': flag_remap_input,
'flag_stitching': flag_stitching_input,
'animation_region': animation_region,
'driving_option': driving_option_input,
'driving_multiplier': driving_multiplier,
'flag_crop_driving_video': flag_crop_driving_video_input,
'scale': scale,
'vx_ratio': vx_ratio,
'vy_ratio': vy_ratio,
'scale_crop_driving_video': scale_crop_driving_video,
'vx_ratio_crop_driving_video': vx_ratio_crop_driving_video,
'vy_ratio_crop_driving_video': vy_ratio_crop_driving_video,
'driving_smooth_observation_variance': driving_smooth_observation_variance,
}
# update config from user input
self.args = update_args(self.args, args_user)
self.live_portrait_wrapper.update_config(self.args.__dict__)
self.cropper.update_config(self.args.__dict__)
output_path, output_path_concat = self.execute(self.args)
gr.Info("Run successfully!", duration=2)
if output_path.endswith(".jpg"):
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), output_path, gr.update(visible=True), output_path_concat, gr.update(visible=True)
else:
return output_path, gr.update(visible=True), output_path_concat, gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
else:
raise gr.Error("Please upload the source portrait or source video, and driving video π€π€π€", duration=5)
@torch.no_grad()
def execute_image_retargeting(
self,
input_eye_ratio: float,
input_lip_ratio: float,
input_head_pitch_variation: float,
input_head_yaw_variation: float,
input_head_roll_variation: float,
mov_x: float,
mov_y: float,
mov_z: float,
lip_variation_zero: float,
lip_variation_one: float,
lip_variation_two: float,
lip_variation_three: float,
smile: float,
wink: float,
eyebrow: float,
eyeball_direction_x: float,
eyeball_direction_y: float,
input_image,
retargeting_source_scale: float,
flag_stitching_retargeting_input=True,
flag_do_crop_input_retargeting_image=True):
""" for single image retargeting
"""
if input_head_pitch_variation is None or input_head_yaw_variation is None or input_head_roll_variation is None:
raise gr.Error("Invalid relative pose input π₯!", duration=5)
# disposable feature
f_s_user, x_s_user, R_s_user, R_d_user, x_s_info, source_lmk_user, crop_M_c2o, mask_ori, img_rgb = \
self.prepare_retargeting_image(
input_image, input_head_pitch_variation, input_head_yaw_variation, input_head_roll_variation, retargeting_source_scale, flag_do_crop=flag_do_crop_input_retargeting_image)
if input_eye_ratio is None or input_lip_ratio is None:
raise gr.Error("Invalid ratio input π₯!", duration=5)
else:
device = self.live_portrait_wrapper.device
# inference_cfg = self.live_portrait_wrapper.inference_cfg
x_s_user = x_s_user.to(device)
f_s_user = f_s_user.to(device)
R_s_user = R_s_user.to(device)
R_d_user = R_d_user.to(device)
mov_x = torch.tensor(mov_x).to(device)
mov_y = torch.tensor(mov_y).to(device)
mov_z = torch.tensor(mov_z).to(device)
eyeball_direction_x = torch.tensor(eyeball_direction_x).to(device)
eyeball_direction_y = torch.tensor(eyeball_direction_y).to(device)
smile = torch.tensor(smile).to(device)
wink = torch.tensor(wink).to(device)
eyebrow = torch.tensor(eyebrow).to(device)
lip_variation_zero = torch.tensor(lip_variation_zero).to(device)
lip_variation_one = torch.tensor(lip_variation_one).to(device)
lip_variation_two = torch.tensor(lip_variation_two).to(device)
lip_variation_three = torch.tensor(lip_variation_three).to(device)
x_c_s = x_s_info['kp'].to(device)
delta_new = x_s_info['exp'].to(device)
scale_new = x_s_info['scale'].to(device)
t_new = x_s_info['t'].to(device)
R_d_new = (R_d_user @ R_s_user.permute(0, 2, 1)) @ R_s_user
if eyeball_direction_x != 0 or eyeball_direction_y != 0:
delta_new = self.update_delta_new_eyeball_direction(eyeball_direction_x, eyeball_direction_y, delta_new)
if smile != 0:
delta_new = self.update_delta_new_smile(smile, delta_new)
if wink != 0:
delta_new = self.update_delta_new_wink(wink, delta_new)
if eyebrow != 0:
delta_new = self.update_delta_new_eyebrow(eyebrow, delta_new)
if lip_variation_zero != 0:
delta_new = self.update_delta_new_lip_variation_zero(lip_variation_zero, delta_new)
if lip_variation_one != 0:
delta_new = self.update_delta_new_lip_variation_one(lip_variation_one, delta_new)
if lip_variation_two != 0:
delta_new = self.update_delta_new_lip_variation_two(lip_variation_two, delta_new)
if lip_variation_three != 0:
delta_new = self.update_delta_new_lip_variation_three(lip_variation_three, delta_new)
if mov_x != 0:
delta_new = self.update_delta_new_mov_x(-mov_x, delta_new)
if mov_y !=0 :
delta_new = self.update_delta_new_mov_y(mov_y, delta_new)
x_d_new = mov_z * scale_new * (x_c_s @ R_d_new + delta_new) + t_new
eyes_delta, lip_delta = None, None
if input_eye_ratio != self.source_eye_ratio:
combined_eye_ratio_tensor = self.live_portrait_wrapper.calc_combined_eye_ratio([[float(input_eye_ratio)]], source_lmk_user)
eyes_delta = self.live_portrait_wrapper.retarget_eye(x_s_user, combined_eye_ratio_tensor)
if input_lip_ratio != self.source_lip_ratio:
combined_lip_ratio_tensor = self.live_portrait_wrapper.calc_combined_lip_ratio([[float(input_lip_ratio)]], source_lmk_user)
lip_delta = self.live_portrait_wrapper.retarget_lip(x_s_user, combined_lip_ratio_tensor)
print(lip_delta)
x_d_new = x_d_new + \
(eyes_delta if eyes_delta is not None else 0) + \
(lip_delta if lip_delta is not None else 0)
if flag_stitching_retargeting_input:
x_d_new = self.live_portrait_wrapper.stitching(x_s_user, x_d_new)
out = self.live_portrait_wrapper.warp_decode(f_s_user, x_s_user, x_d_new)
out = self.live_portrait_wrapper.parse_output(out['out'])[0]
if flag_do_crop_input_retargeting_image:
out_to_ori_blend = paste_back(out, crop_M_c2o, img_rgb, mask_ori)
else:
out_to_ori_blend = out
return out, out_to_ori_blend
@torch.no_grad()
def prepare_retargeting_image(
self,
input_image,
input_head_pitch_variation, input_head_yaw_variation, input_head_roll_variation,
retargeting_source_scale,
flag_do_crop=True):
""" for single image retargeting
"""
if input_image is not None:
# gr.Info("Upload successfully!", duration=2)
args_user = {'scale': retargeting_source_scale}
self.args = update_args(self.args, args_user)
self.cropper.update_config(self.args.__dict__)
inference_cfg = self.live_portrait_wrapper.inference_cfg
######## process source portrait ########
img_rgb = load_img_online(input_image, mode='rgb', max_dim=1280, n=2)
if flag_do_crop:
crop_info = self.cropper.crop_source_image(img_rgb, self.cropper.crop_cfg)
I_s = self.live_portrait_wrapper.prepare_source(crop_info['img_crop_256x256'])
source_lmk_user = crop_info['lmk_crop']
crop_M_c2o = crop_info['M_c2o']
mask_ori = prepare_paste_back(inference_cfg.mask_crop, crop_info['M_c2o'], dsize=(img_rgb.shape[1], img_rgb.shape[0]))
else:
I_s = self.live_portrait_wrapper.prepare_source(img_rgb)
source_lmk_user = self.cropper.calc_lmk_from_cropped_image(img_rgb)
crop_M_c2o = None
mask_ori = None
x_s_info = self.live_portrait_wrapper.get_kp_info(I_s)
x_d_info_user_pitch = x_s_info['pitch'] + input_head_pitch_variation
x_d_info_user_yaw = x_s_info['yaw'] + input_head_yaw_variation
x_d_info_user_roll = x_s_info['roll'] + input_head_roll_variation
R_s_user = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
R_d_user = get_rotation_matrix(x_d_info_user_pitch, x_d_info_user_yaw, x_d_info_user_roll)
############################################
f_s_user = self.live_portrait_wrapper.extract_feature_3d(I_s)
x_s_user = self.live_portrait_wrapper.transform_keypoint(x_s_info)
return f_s_user, x_s_user, R_s_user, R_d_user, x_s_info, source_lmk_user, crop_M_c2o, mask_ori, img_rgb
else:
raise gr.Error("Please upload a source portrait as the retargeting input π€π€π€", duration=5)
@torch.no_grad()
def init_retargeting_image(self, retargeting_source_scale: float, source_eye_ratio: float, source_lip_ratio:float, input_image = None):
""" initialize the retargeting slider
"""
if input_image != None:
args_user = {'scale': retargeting_source_scale}
self.args = update_args(self.args, args_user)
self.cropper.update_config(self.args.__dict__)
# inference_cfg = self.live_portrait_wrapper.inference_cfg
######## process source portrait ########
img_rgb = load_img_online(input_image, mode='rgb', max_dim=1280, n=16)
log(f"Load source image from {input_image}.")
crop_info = self.cropper.crop_source_image(img_rgb, self.cropper.crop_cfg)
if crop_info is None:
raise gr.Error("Source portrait NO face detected", duration=2)
source_eye_ratio = calc_eye_close_ratio(crop_info['lmk_crop'][None])
source_lip_ratio = calc_lip_close_ratio(crop_info['lmk_crop'][None])
self.source_eye_ratio = round(float(source_eye_ratio.mean()), 2)
self.source_lip_ratio = round(float(source_lip_ratio[0][0]), 2)
log("Calculating eyes-open and lip-open ratios successfully!")
return self.source_eye_ratio, self.source_lip_ratio
else:
return source_eye_ratio, source_lip_ratio
@torch.no_grad()
def execute_video_retargeting(self, input_lip_ratio: float, input_video, retargeting_source_scale: float, driving_smooth_observation_variance_retargeting: float, video_retargeting_silence=False, flag_do_crop_input_retargeting_video=True):
""" retargeting the lip-open ratio of each source frame
"""
# disposable feature
device = self.live_portrait_wrapper.device
if not video_retargeting_silence:
f_s_user_lst, x_s_user_lst, source_lmk_crop_lst, source_M_c2o_lst, mask_ori_lst, source_rgb_lst, img_crop_256x256_lst, lip_delta_retargeting_lst_smooth, source_fps, n_frames = \
self.prepare_retargeting_video(input_video, retargeting_source_scale, device, input_lip_ratio, driving_smooth_observation_variance_retargeting, flag_do_crop=flag_do_crop_input_retargeting_video)
if input_lip_ratio is None:
raise gr.Error("Invalid ratio input π₯!", duration=5)
else:
inference_cfg = self.live_portrait_wrapper.inference_cfg
I_p_pstbk_lst = None
if flag_do_crop_input_retargeting_video:
I_p_pstbk_lst = []
I_p_lst = []
for i in track(range(n_frames), description='Retargeting video...', total=n_frames):
x_s_user_i = x_s_user_lst[i].to(device)
f_s_user_i = f_s_user_lst[i].to(device)
lip_delta_retargeting = lip_delta_retargeting_lst_smooth[i]
x_d_i_new = x_s_user_i + lip_delta_retargeting
x_d_i_new = self.live_portrait_wrapper.stitching(x_s_user_i, x_d_i_new)
out = self.live_portrait_wrapper.warp_decode(f_s_user_i, x_s_user_i, x_d_i_new)
I_p_i = self.live_portrait_wrapper.parse_output(out['out'])[0]
I_p_lst.append(I_p_i)
if flag_do_crop_input_retargeting_video:
I_p_pstbk = paste_back(I_p_i, source_M_c2o_lst[i], source_rgb_lst[i], mask_ori_lst[i])
I_p_pstbk_lst.append(I_p_pstbk)
else:
inference_cfg = self.live_portrait_wrapper.inference_cfg
f_s_user_lst, x_s_user_lst, x_d_i_new_lst, source_M_c2o_lst, mask_ori_lst, source_rgb_lst, img_crop_256x256_lst, source_fps, n_frames = \
self.prepare_video_lip_silence(input_video, device, flag_do_crop=flag_do_crop_input_retargeting_video)
I_p_pstbk_lst = None
if flag_do_crop_input_retargeting_video:
I_p_pstbk_lst = []
I_p_lst = []
for i in track(range(n_frames), description='Silencing lip...', total=n_frames):
x_s_user_i = x_s_user_lst[i].to(device)
f_s_user_i = f_s_user_lst[i].to(device)
x_d_i_new = x_d_i_new_lst[i]
x_d_i_new = self.live_portrait_wrapper.stitching(x_s_user_i, x_d_i_new)
out = self.live_portrait_wrapper.warp_decode(f_s_user_i, x_s_user_i, x_d_i_new)
I_p_i = self.live_portrait_wrapper.parse_output(out['out'])[0]
I_p_lst.append(I_p_i)
if flag_do_crop_input_retargeting_video:
I_p_pstbk = paste_back(I_p_i, source_M_c2o_lst[i], source_rgb_lst[i], mask_ori_lst[i])
I_p_pstbk_lst.append(I_p_pstbk)
mkdir(self.args.output_dir)
flag_source_has_audio = has_audio_stream(input_video)
######### build the final concatenation result #########
# source frame | generation
frames_concatenated = concat_frames(driving_image_lst=None, source_image_lst=img_crop_256x256_lst, I_p_lst=I_p_lst)
wfp_concat = osp.join(self.args.output_dir, f'{basename(input_video)}_retargeting_concat.mp4')
images2video(frames_concatenated, wfp=wfp_concat, fps=source_fps)
if flag_source_has_audio:
# final result with concatenation
wfp_concat_with_audio = osp.join(self.args.output_dir, f'{basename(input_video)}_retargeting_concat_with_audio.mp4')
add_audio_to_video(wfp_concat, input_video, wfp_concat_with_audio)
os.replace(wfp_concat_with_audio, wfp_concat)
log(f"Replace {wfp_concat_with_audio} with {wfp_concat}")
# save the animated result
wfp = osp.join(self.args.output_dir, f'{basename(input_video)}_retargeting.mp4')
if I_p_pstbk_lst is not None and len(I_p_pstbk_lst) > 0:
images2video(I_p_pstbk_lst, wfp=wfp, fps=source_fps)
else:
images2video(I_p_lst, wfp=wfp, fps=source_fps)
######### build the final result #########
if flag_source_has_audio:
wfp_with_audio = osp.join(self.args.output_dir, f'{basename(input_video)}_retargeting_with_audio.mp4')
add_audio_to_video(wfp, input_video, wfp_with_audio)
os.replace(wfp_with_audio, wfp)
log(f"Replace {wfp_with_audio} with {wfp}")
gr.Info("Run successfully!", duration=2)
return wfp_concat, wfp
@torch.no_grad()
def prepare_retargeting_video(self, input_video, retargeting_source_scale, device, input_lip_ratio, driving_smooth_observation_variance_retargeting, flag_do_crop=True):
""" for video retargeting
"""
if input_video is not None:
# gr.Info("Upload successfully!", duration=2)
args_user = {'scale': retargeting_source_scale}
self.args = update_args(self.args, args_user)
self.cropper.update_config(self.args.__dict__)
inference_cfg = self.live_portrait_wrapper.inference_cfg
######## process source video ########
source_rgb_lst = load_video(input_video)
source_rgb_lst = [resize_to_limit(img, inference_cfg.source_max_dim, inference_cfg.source_division) for img in source_rgb_lst]
source_fps = int(get_fps(input_video))
n_frames = len(source_rgb_lst)
log(f"Load source video from {input_video}. FPS is {source_fps}")
if flag_do_crop:
ret_s = self.cropper.crop_source_video(source_rgb_lst, self.cropper.crop_cfg)
log(f'Source video is cropped, {len(ret_s["frame_crop_lst"])} frames are processed.')
if len(ret_s["frame_crop_lst"]) != n_frames:
n_frames = min(len(source_rgb_lst), len(ret_s["frame_crop_lst"]))
img_crop_256x256_lst, source_lmk_crop_lst, source_M_c2o_lst = ret_s['frame_crop_lst'], ret_s['lmk_crop_lst'], ret_s['M_c2o_lst']
mask_ori_lst = [prepare_paste_back(inference_cfg.mask_crop, source_M_c2o, dsize=(source_rgb_lst[0].shape[1], source_rgb_lst[0].shape[0])) for source_M_c2o in source_M_c2o_lst]
else:
source_lmk_crop_lst = self.cropper.calc_lmks_from_cropped_video(source_rgb_lst)
img_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in source_rgb_lst] # force to resize to 256x256
source_M_c2o_lst, mask_ori_lst = None, None
c_s_eyes_lst, c_s_lip_lst = self.live_portrait_wrapper.calc_ratio(source_lmk_crop_lst)
# save the motion template
I_s_lst = self.live_portrait_wrapper.prepare_videos(img_crop_256x256_lst)
source_template_dct = self.make_motion_template(I_s_lst, c_s_eyes_lst, c_s_lip_lst, output_fps=source_fps)
c_d_lip_retargeting = [input_lip_ratio]
f_s_user_lst, x_s_user_lst, lip_delta_retargeting_lst = [], [], []
for i in track(range(n_frames), description='Preparing retargeting video...', total=n_frames):
x_s_info = source_template_dct['motion'][i]
x_s_info = dct2device(x_s_info, device)
x_s_user = x_s_info['x_s']
source_lmk = source_lmk_crop_lst[i]
img_crop_256x256 = img_crop_256x256_lst[i]
I_s = I_s_lst[i]
f_s_user = self.live_portrait_wrapper.extract_feature_3d(I_s)
combined_lip_ratio_tensor_retargeting = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_retargeting, source_lmk)
lip_delta_retargeting = self.live_portrait_wrapper.retarget_lip(x_s_user, combined_lip_ratio_tensor_retargeting)
f_s_user_lst.append(f_s_user); x_s_user_lst.append(x_s_user); lip_delta_retargeting_lst.append(lip_delta_retargeting.cpu().numpy().astype(np.float32))
lip_delta_retargeting_lst_smooth = smooth(lip_delta_retargeting_lst, lip_delta_retargeting_lst[0].shape, device, driving_smooth_observation_variance_retargeting)
return f_s_user_lst, x_s_user_lst, source_lmk_crop_lst, source_M_c2o_lst, mask_ori_lst, source_rgb_lst, img_crop_256x256_lst, lip_delta_retargeting_lst_smooth, source_fps, n_frames
else:
# when press the clear button, go here
raise gr.Error("Please upload a source video as the retargeting input π€π€π€", duration=5)
@torch.no_grad()
def prepare_video_lip_silence(self, input_video, device, flag_do_crop=True):
""" for keeping lips in the source video silent
"""
if input_video is not None:
inference_cfg = self.live_portrait_wrapper.inference_cfg
######## process source video ########
source_rgb_lst = load_video(input_video)
source_rgb_lst = [resize_to_limit(img, inference_cfg.source_max_dim, inference_cfg.source_division) for img in source_rgb_lst]
source_fps = int(get_fps(input_video))
n_frames = len(source_rgb_lst)
log(f"Load source video from {input_video}. FPS is {source_fps}")
if flag_do_crop:
ret_s = self.cropper.crop_source_video(source_rgb_lst, self.cropper.crop_cfg)
log(f'Source video is cropped, {len(ret_s["frame_crop_lst"])} frames are processed.')
if len(ret_s["frame_crop_lst"]) != n_frames:
n_frames = min(len(source_rgb_lst), len(ret_s["frame_crop_lst"]))
img_crop_256x256_lst, source_lmk_crop_lst, source_M_c2o_lst = ret_s['frame_crop_lst'], ret_s['lmk_crop_lst'], ret_s['M_c2o_lst']
mask_ori_lst = [prepare_paste_back(inference_cfg.mask_crop, source_M_c2o, dsize=(source_rgb_lst[0].shape[1], source_rgb_lst[0].shape[0])) for source_M_c2o in source_M_c2o_lst]
else:
source_lmk_crop_lst = self.cropper.calc_lmks_from_cropped_video(source_rgb_lst)
img_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in source_rgb_lst] # force to resize to 256x256
source_M_c2o_lst, mask_ori_lst = None, None
c_s_eyes_lst, c_s_lip_lst = self.live_portrait_wrapper.calc_ratio(source_lmk_crop_lst)
# save the motion template
I_s_lst = self.live_portrait_wrapper.prepare_videos(img_crop_256x256_lst)
source_template_dct = self.make_motion_template(I_s_lst, c_s_eyes_lst, c_s_lip_lst, output_fps=source_fps)
f_s_user_lst, x_s_user_lst, x_d_i_new_lst = [], [], []
for i in track(range(n_frames), description='Preparing silencing lip...', total=n_frames):
x_s_info = source_template_dct['motion'][i]
x_s_info = dct2device(x_s_info, device)
scale_s = x_s_info['scale']
x_s_user = x_s_info['x_s']
x_c_s = x_s_info['kp']
R_s = x_s_info['R']
t_s = x_s_info['t']
delta_new = torch.zeros_like(x_s_info['exp']) + torch.from_numpy(inference_cfg.lip_array).to(dtype=torch.float32, device=device)
for eyes_idx in [11, 13, 15, 16, 18]:
delta_new[:, eyes_idx, :] = x_s_info['exp'][:, eyes_idx, :]
source_lmk = source_lmk_crop_lst[i]
img_crop_256x256 = img_crop_256x256_lst[i]
I_s = I_s_lst[i]
f_s_user = self.live_portrait_wrapper.extract_feature_3d(I_s)
x_d_i_new = scale_s * (x_c_s @ R_s + delta_new) + t_s
f_s_user_lst.append(f_s_user); x_s_user_lst.append(x_s_user); x_d_i_new_lst.append(x_d_i_new)
return f_s_user_lst, x_s_user_lst, x_d_i_new_lst, source_M_c2o_lst, mask_ori_lst, source_rgb_lst, img_crop_256x256_lst, source_fps, n_frames
else:
# when press the clear button, go here
raise gr.Error("Please upload a source video as the input π€π€π€", duration=5)
class GradioPipelineAnimal(LivePortraitPipelineAnimal):
"""gradio for animal
"""
def __init__(self, inference_cfg, crop_cfg, args: ArgumentConfig):
inference_cfg.flag_crop_driving_video = True # ensure the face_analysis_wrapper is enabled
super().__init__(inference_cfg, crop_cfg)
# self.live_portrait_wrapper_animal = self.live_portrait_wrapper_animal
self.args = args
@torch.no_grad()
def execute_video(
self,
input_source_image_path=None,
input_driving_video_path=None,
input_driving_video_pickle_path=None,
flag_do_crop_input=False,
flag_remap_input=False,
driving_multiplier=1.0,
flag_stitching=False,
flag_crop_driving_video_input=False,
scale=2.3,
vx_ratio=0.0,
vy_ratio=-0.125,
scale_crop_driving_video=2.2,
vx_ratio_crop_driving_video=0.0,
vy_ratio_crop_driving_video=-0.1,
tab_selection=None,
):
""" for video-driven potrait animation
"""
input_source_path = input_source_image_path
if tab_selection == 'Video':
input_driving_path = input_driving_video_path
elif tab_selection == 'Pickle':
input_driving_path = input_driving_video_pickle_path
else:
input_driving_path = input_driving_video_pickle_path
if input_source_path is not None and input_driving_path is not None:
if osp.exists(input_driving_path) and tab_selection == 'Video' and is_square_video(input_driving_path) is False:
flag_crop_driving_video_input = True
log("The driving video is not square, it will be cropped to square automatically.")
gr.Info("The driving video is not square, it will be cropped to square automatically.", duration=2)
args_user = {
'source': input_source_path,
'driving': input_driving_path,
'flag_do_crop': flag_do_crop_input,
'flag_pasteback': flag_remap_input,
'driving_multiplier': driving_multiplier,
'flag_stitching': flag_stitching,
'flag_crop_driving_video': flag_crop_driving_video_input,
'scale': scale,
'vx_ratio': vx_ratio,
'vy_ratio': vy_ratio,
'scale_crop_driving_video': scale_crop_driving_video,
'vx_ratio_crop_driving_video': vx_ratio_crop_driving_video,
'vy_ratio_crop_driving_video': vy_ratio_crop_driving_video,
}
# update config from user input
self.args = update_args(self.args, args_user)
self.live_portrait_wrapper_animal.update_config(self.args.__dict__)
self.cropper.update_config(self.args.__dict__)
# video driven animation
video_path, video_path_concat, video_gif_path = self.execute(self.args)
gr.Info("Run successfully!", duration=2)
return video_path, video_path_concat, video_gif_path
else:
raise gr.Error("Please upload the source animal image, and driving video π€π€π€", duration=5)