forked from sotopia-lab/awesome-social-agents
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.bib
4132 lines (3824 loc) · 177 KB
/
main.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Example of a paper entry
@misc{qian2023communicative,
title={Communicative Agents for Software Development},
author={Chen Qian and Xin Cong and Wei Liu and Cheng Yang and Weize Chen and Yusheng Su and Yufan Dang and Jiahao Li and Juyuan Xu and Dahai Li and Zhiyuan Liu and Maosong Sun},
year={2023},
url={https://arxiv.org/abs/2307.07924},
environments = {collaboration, embodied},
agents = {prompting_and_in_context_learning, more_than_three_agents},
evaluation = {rule_based},
other = {n/a},
eprint={2307.07924},
archivePrefix={arXiv},
primaryClass={cs.SE},
}
## Papers
### Surveys and Overview
### Environments
#### Text Environments
@article{environments/language,
title = {This is a specical entry for us to automatically determine the subsection of the paper, please put the real entry below this one},
author = {specical entry},
}
@article{Bard_2020,
title={The Hanabi challenge: A new frontier for AI research},
volume={280},
ISSN={0004-3702},
url={http://dx.doi.org/10.1016/j.artint.2019.103216},
DOI={10.1016/j.artint.2019.103216},
journal={Artificial Intelligence},
publisher={Elsevier BV},
author={Bard, Nolan and Foerster, Jakob N. and Chandar, Sarath and Burch, Neil and Lanctot, Marc and Song, H. Francis and Parisotto, Emilio and Dumoulin, Vincent and Moitra, Subhodeep and Hughes, Edward and Dunning, Iain and Mourad, Shibl and Larochelle, Hugo and Bellemare, Marc G. and Bowling, Michael},
year={2020},
environments={collaboration, text},
agents={more_than_three_agents},
evaluation={rule_based},
other={n/a},
month={3}, pages={103216} }
@inproceedings{he-etal-2018-decoupling,
title = "Decoupling Strategy and Generation in Negotiation Dialogues",
author = "He, He and
Chen, Derek and
Balakrishnan, Anusha and
Liang, Percy",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = {10},
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1256",
doi = "10.18653/v1/D18-1256",
pages = "2333--2343",
environments={text, mixed_objectives},
agents={finetuning, reinforcement_learning, two_agents, agents_with_memory},
evaluation={human},
other={n/a}
}
@inproceedings{lewis-etal-2017-deal,
title = "Deal or No Deal? End-to-End Learning of Negotiation Dialogues",
author = "Lewis, Mike and
Yarats, Denis and
Dauphin, Yann and
Parikh, Devi and
Batra, Dhruv",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = {9},
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1259",
doi = "10.18653/v1/D17-1259",
pages = "2443--2453",
environments={text, mixed_objectives},
agents={reinforcement_learning, two_agents, agents_with_memory},
evaluation={rule_based},
other={human_agent}
}
@inproceedings{wang-etal-2019-persuasion,
title = "Persuasion for Good: Towards a Personalized Persuasive Dialogue System for Social Good",
author = "Wang, Xuewei and
Shi, Weiyan and
Kim, Richard and
Oh, Yoojung and
Yang, Sijia and
Zhang, Jingwen and
Yu, Zhou",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1566",
doi = "10.18653/v1/P19-1566",
pages = "5635--5649",
abstract = "Developing intelligent persuasive conversational agents to change people{'}s opinions and actions for social good is the frontier in advancing the ethical development of automated dialogue systems. To do so, the first step is to understand the intricate organization of strategic disclosures and appeals employed in human persuasion conversations. We designed an online persuasion task where one participant was asked to persuade the other to donate to a specific charity. We collected a large dataset with 1,017 dialogues and annotated emerging persuasion strategies from a subset. Based on the annotation, we built a baseline classifier with context information and sentence-level features to predict the 10 persuasion strategies used in the corpus. Furthermore, to develop an understanding of personalized persuasion processes, we analyzed the relationships between individuals{'} demographic and psychological backgrounds including personality, morality, value systems, and their willingness for donation. Then, we analyzed which types of persuasion strategies led to a greater amount of donation depending on the individuals{'} personal backgrounds. This work lays the ground for developing a personalized persuasive dialogue system.",
environments={text, mixed_objectives},
agents={two_agents, finetuning},
evaluation={human, rule_based},
other={human_agent}
}
@inproceedings{peskov-etal-2020-takes,
title = "It Takes Two to Lie: One to Lie, and One to Listen",
author = "Peskov, Denis and
Cheng, Benny and
Elgohary, Ahmed and
Barrow, Joe and
Danescu-Niculescu-Mizil, Cristian and
Boyd-Graber, Jordan",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.353",
doi = "10.18653/v1/2020.acl-main.353",
pages = "3811--3854",
abstract = "Trust is implicit in many online text conversations{---}striking up new friendships, or asking for tech support. But trust can be betrayed through deception. We study the language and dynamics of deception in the negotiation-based game Diplomacy, where seven players compete for world domination by forging and breaking alliances with each other. Our study with players from the Diplomacy community gathers 17,289 messages annotated by the sender for their intended truthfulness and by the receiver for their perceived truthfulness. Unlike existing datasets, this captures deception in long-lasting relationships, where the interlocutors strategically combine truth with lies to advance objectives. A model that uses power dynamics and conversational contexts can predict when a lie occurs nearly as well as human players.",
environments={text, mixed_objectives},
agents={more_than_three_agents},
evaluation={model_based},
other={human_agent}
}
@article{LanctotEtAl2019OpenSpiel,
title = {{OpenSpiel}: A Framework for Reinforcement Learning in Games},
author = {Marc Lanctot and Edward Lockhart and Jean-Baptiste Lespiau and
Vinicius Zambaldi and Satyaki Upadhyay and Julien P\'{e}rolat and
Sriram Srinivasan and Finbarr Timbers and Karl Tuyls and
Shayegan Omidshafiei and Daniel Hennes and Dustin Morrill and
Paul Muller and Timo Ewalds and Ryan Faulkner and J\'{a}nos Kram\'{a}r
and Bart De Vylder and Brennan Saeta and James Bradbury and David Ding
and Sebastian Borgeaud and Matthew Lai and Julian Schrittwieser and
Thomas Anthony and Edward Hughes and Ivo Danihelka and Jonah Ryan-Davis},
month = {8},
year = {2019},
eprint = {1908.09453},
archivePrefix = {arXiv},
primaryClass = {cs.LG},
journal = {CoRR},
volume = {abs/1908.09453},
url = {http://arxiv.org/abs/1908.09453},
environments={collaboration, competition, mixed_objectives, text},
agents={two_agents, more_than_three_agents, reinforcement_learning},
evaluation={rule_based},
other={n/a}
}
@article{zha2019rlcard,
title={RLCard: A Toolkit for Reinforcement Learning in Card Games},
author={Zha, Daochen and Lai, Kwei-Herng and Cao, Yuanpu and Huang, Songyi and Wei, Ruzhe and Guo, Junyu and Hu, Xia},
journal={arXiv preprint arXiv:1910.04376},
month = {7},
year={2019},
environments={collaboration, competition, mixed_objectives, text},
agents={two_agents, more_than_three_agents, reinforcement_learning},
evaluation={rule_based},
other={n/a},
url={https://github.com/datamllab/rlcard}
}
@article{meta2022human,
title={Human-level play in the game of Diplomacy by combining language models with strategic reasoning},
author={Meta Fundamental AI Research Diplomacy Team (FAIR)† and Bakhtin, Anton and Brown, Noam and Dinan, Emily and Farina, Gabriele and Flaherty, Colin and Fried, Daniel and Goff, Andrew and Gray, Jonathan and Hu, Hengyuan and others},
journal={Science},
volume={378},
number={6624},
pages={1067--1074},
month={11},
year={2022},
publisher={American Association for the Advancement of Science},
url={https://www.science.org/doi/full/10.1126/science.ade9097},
environments={competition, text},
agents={more_than_three_agents, reinforcement_learning, finetuning},
evaluation={rule_based},
other={human_agent}
}
@software{multigrid,
author = {Oguntola, Ini},
title = {Fast Multi-Agent Gridworld Environments for Gymnasium},
url = {https://github.com/ini/multigrid},
month = {3},
year = {2023},
journal = {GitHub},
environments={collaboration, competition, text},
agents={two_agents, more_than_three_agents, reinforcement_learning},
evaluation={rule_based},
other={n/a}
}
@inproceedings{callison-burch-etal-2022-dungeons,
title = "Dungeons and Dragons as a Dialog Challenge for Artificial Intelligence",
author = "Callison-Burch, Chris and
Tomar, Gaurav Singh and
Martin, Lara and
Ippolito, Daphne and
Bailis, Suma and
Reitter, David",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.637",
doi = "10.18653/v1/2022.emnlp-main.637",
pages = "9379--9393",
abstract = "AI researchers have posited Dungeons and Dragons (D{\&}D) as a challenge problem to test systems on various language-related capabilities. In this paper, we frame D{\&}D specifically as a dialogue system challenge, where the tasks are to both generate the next conversational turn in the game and predict the state of the game given the dialogue history. We create a gameplay dataset consisting of nearly 900 games, with a total of 7,000 players, 800,000 dialogue turns, 500,000 dice rolls, and 58 million words. We automatically annotate the data with partial state information about the game play. We train a large language model (LM) to generate the next game turn, conditioning it on different information. The LM can respond as a particular character or as the player who runs the game{---}i.e., the Dungeon Master (DM). It is trained to produce dialogue that is either in-character (roleplaying in the fictional world) or out-of-character (discussing rules or strategy). We perform a human evaluation to determine what factors make the generated output plausible and interesting. We further perform an automatic evaluation to determine how well the model can predict the game state given the history and examine how well tracking the game state improves its ability to produce plausible conversational output.",
environments={text, implicit_objectives},
agents={more_than_three_agents, pretraining, finetuning},
evaluation={human, rule_based},
other={human_agent}
}
@inproceedings{zhou-etal-2023-cast,
title = "{I} Cast Detect Thoughts: Learning to Converse and Guide with Intents and Theory-of-Mind in Dungeons and Dragons",
author = "Zhou, Pei and
Zhu, Andrew and
Hu, Jennifer and
Pujara, Jay and
Ren, Xiang and
Callison-Burch, Chris and
Choi, Yejin and
Ammanabrolu, Prithviraj",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.624",
doi = "10.18653/v1/2023.acl-long.624",
pages = "11136--11155",
abstract = "We propose a novel task, G4C, to study teacher-student natural language interactions in a goal-driven and grounded environment. Dungeons and Dragons (D{\&}D), a role-playing game, provides an ideal setting to investigate such interactions. Here, the Dungeon Master (DM), i.e., the teacher, guides the actions of several players{---}students, each with their own personas and abilities{---}to achieve shared goals grounded in a fantasy world. Our approach is to decompose and model these interactions into (1) the DM{'}s intent to guide players toward a given goal; (2) the DM{'}s guidance utterance to the players expressing this intent; and (3) a theory-of-mind (ToM) model that anticipates the players{'} reaction to the guidance one turn into the future. We develop a novel reinforcement learning (RL) method for training a DM that generates guidance for players by rewarding utterances where the intent matches the ToM-anticipated player actions. Human and automated evaluations show that a DM trained to explicitly model intents and incorporate ToM of the players using RL generates better-quality guidance that is 3x more likely to fulfill the DM{'}s intent than a vanilla natural language generation (NLG) approach.",
environments={text, implicit_objectives},
agents={more_than_three_agents, reinforcement_learning},
evaluation={human, rule_based},
other={human_agent}
}
@inproceedings{zhu-etal-2023-fireball,
title = "{FIREBALL}: A Dataset of Dungeons and Dragons Actual-Play with Structured Game State Information",
author = "Zhu, Andrew and
Aggarwal, Karmanya and
Feng, Alexander and
Martin, Lara and
Callison-Burch, Chris",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.229",
doi = "10.18653/v1/2023.acl-long.229",
pages = "4171--4193",
abstract = "Dungeons {\&} Dragons (D{\&}D) is a tabletop roleplaying game with complex natural language interactions between players and hidden state information. Recent work has shown that large language models (LLMs) that have access to state information can generate higher quality game turns than LLMs that use dialog history alone. However, previous work used game state information that was heuristically created and was not a true gold standard game state. We present FIREBALL, a large dataset containing nearly 25,000 unique sessions from real D{\&}D gameplay on Discord with true game state info. We recorded game play sessions of players who used the Avrae bot, which was developed to aid people in playing D{\&}D online, capturing language, game commands and underlying game state information. We demonstrate that FIREBALL can improve natural language generation (NLG) by using Avrae state information, improving both automated metrics and human judgments of quality. Additionally, we show that LLMs can generate executable Avrae commands, particularly after finetuning.",
environments={text, implicit_objectives},
agents={more_than_three_agents, finetuning},
evaluation={human, rule_based},
other={human_agent}
}
@inproceedings{zhu2023calypso,
title={{CALYPSO}: {LLMs} as Dungeon Masters' Assistants},
author={Zhu, Andrew and Martin, Lara J. and Head, Andrew and Callison-Burch, Chris},
booktitle={The 19th AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2023)},
month={8},
year={2023},
environments={text, implicit_objectives},
agents={more_than_three_agents, finetuning},
evaluation={human},
other={human_agent},
url={https://arxiv.org/abs/2308.07540}
}
@article{eliza1966weizenbaum,
author = {Weizenbaum, Joseph},
title = {ELIZA—a computer program for the study of natural language communication between man and machine},
year = {1966},
issue_date = {Jan. 1966},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/365153.365168},
doi = {10.1145/365153.365168},
journal = {Commun. ACM},
month = {jan},
pages = {36–45},
environments={text, mixed_objectives},
agents={agents_with_personas},
evaluation={human},
other={n/a}
}
@article{shuster2022blenderbot,
title={Blenderbot 3: a deployed conversational agent that continually learns to responsibly engage},
author={Shuster, Kurt and Xu, Jing and Komeili, Mojtaba and Ju, Da and Smith, Eric Michael and Roller, Stephen and Ung, Megan and Chen, Moya and Arora, Kushal and Lane, Joshua and others},
journal={arXiv preprint arXiv:2208.03188},
year={2022},
month={8},
url={https://arxiv.org/abs/2208.03188},
environments={text, mixed_objectives},
agents={finetuning},
evaluation={qualitative, human},
other={n/a}
}
@misc{introducing2022,
title={Introducing ChatGPT},
author={OpenAI},
year={2022},
month={11},
url={https://openai.com/blog/chatgpt},
journal={n/a},
environments={text, mixed_objectives},
agents={prompting_and_in_context_learning, agents_with_memory},
evaluation={qualitative, human},
other={human_agent}
}
@article{chiang2024chatbot,
title={Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference},
author={Chiang, Wei-Lin and Zheng, Lianmin and Sheng, Ying and Angelopoulos, Anastasios Nikolas and Li, Tianle and Li, Dacheng and Zhang, Hao and Zhu, Banghua and Jordan, Michael and Gonzalez, Joseph E and others},
journal={arXiv preprint arXiv:2403.04132},
year={2024},
month={3},
url={https://arxiv.org/abs/2403.04132},
environments={text, mixed_objectives},
agents={prompting_and_in_context_learning},
evaluation={qualitative, human},
other={human_agent}
}
@article{zhang2022opt,
title={Opt: Open pre-trained transformer language models},
author={Zhang, Susan and Roller, Stephen and Goyal, Naman and Artetxe, Mikel and Chen, Moya and Chen, Shuohui and Dewan, Christopher and Diab, Mona and Li, Xian and Lin, Xi Victoria and others},
journal={arXiv preprint arXiv:2205.01068},
year={2022},
month={5},
url={https://arxiv.org/abs/2205.01068},
environments={text, mixed_objectives},
agents={finetuning, agents_with_personas},
evaluation={qualitative, human},
other={human_agent}
}
@article{zhou2020design,
title = "The Design and Implementation of {X}iao{I}ce, an Empathetic Social Chatbot",
author = "Zhou, Li and
Gao, Jianfeng and
Li, Di and
Shum, Heung-Yeung",
journal = "Computational Linguistics",
volume = "46",
number = "1",
year = "2020",
month = "3",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/2020.cl-1.2",
doi = "10.1162/coli_a_00368",
pages = "53--93",
environments={text, mixed_objectives},
agents={finetuning, agents_with_personas},
evaluation={qualitative, human},
other={human_agent}
}
@incollection{cai2006empathic,
title={Empathic computing},
author={Cai, Yang},
booktitle={Ambient intelligence in everyday life: Foreword by Emile Aarts},
pages={67--85},
year={2006},
month={1},
publisher={Springer},
url={https://link.springer.com/chapter/10.1007/11825890_3},
environments={text, mixed_objectives},
agents={agents_with_personas},
evaluation={human},
other={n/a}
}
@inproceedings{dinan2018wizard,
title={Wizard of Wikipedia: Knowledge-Powered Conversational Agents},
author={Emily Dinan and Stephen Roller and Kurt Shuster and Angela Fan and Michael Auli and Jason Weston},
booktitle={International Conference on Learning Representations},
year={2019},
month={4},
url={https://openreview.net/forum?id=r1l73iRqKm},
environments={text, mixed_objectives, implicit_objectives},
agents={finetuning, agents_with_personas},
evaluation={qualitative, human},
other={human_agent}
}
@inproceedings{ghazvininejad2018knowledge,
title={A knowledge-grounded neural conversation model},
author={Ghazvininejad, Marjan and Brockett, Chris and Chang, Ming-Wei and Dolan, Bill and Gao, Jianfeng and Yih, Wen-tau and Galley, Michel},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={32},
number={1},
year={2018},
month={4},
url={https://ojs.aaai.org/index.php/AAAI/article/view/11977},
environments={text, mixed_objectives, implicit_objectives},
agents={finetuning},
evaluation={qualitative, human},
other={human_agent}
}
@article{li2016persona,
title={A persona-based neural conversation model},
author={Li, Jiwei and Galley, Michel and Brockett, Chris and Spithourakis, Georgios P and Gao, Jianfeng and Dolan, Bill},
journal={arXiv preprint arXiv:1603.06155},
year={2016},
month={8},
url={https://aclanthology.org/P16-1094/},
environments={text, mixed_objectives},
agents={finetuning, agents_with_personas},
evaluation={qualitative, human},
other={human_agent}
}
@book{wallace2009anatomy,
title={The anatomy of ALICE},
author={Wallace, Richard S},
year={2009},
month={11},
publisher={Springer},
journal={n/a},
url={https://link.springer.com/chapter/10.1007/978-1-4020-6710-5_13},
environments={text, mixed_objectives},
agents={agents_with_personas},
evaluation={human},
other={n/a}
}
@inproceedings{fung2018towards,
title={Towards empathetic human-robot interactions},
author={Fung, Pascale and Bertero, Dario and Wan, Yan and Dey, Anik and Chan, Ricky Ho Yin and Bin Siddique, Farhad and Yang, Yang and Wu, Chien-Sheng and Lin, Ruixi},
booktitle={Computational Linguistics and Intelligent Text Processing: 17th International Conference, CICLing 2016, Konya, Turkey, April 3--9, 2016, Revised Selected Papers, Part II 17},
pages={173--193},
year={2018},
month={3},
organization={Springer},
url={https://link.springer.com/chapter/10.1007/978-3-319-75487-1_14},
environments={text, mixed_objectives},
agents={agents_with_personas},
evaluation={qualitative, human},
other={human_agent}
}
#### Embodied Environments
@article{environments/embodied,
title = {This is a specical entry for us to automatically determine the subsection of the paper, please put the real entry below this one},
author = {specical entry},
}
@inproceedings{10.1145/3406499.3418760,
author = {Tsoi, Nathan and Hussein, Mohamed and Espinoza, Jeacy and Ruiz, Xavier and V\'{a}zquez, Marynel},
title = {SEAN: Social Environment for Autonomous Navigation},
year = {2020},
month={9},
isbn = {9781450380546},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3406499.3418760},
doi = {10.1145/3406499.3418760},
abstract = {Social navigation research is performed on a variety of robotic platforms, scenarios, and environments. Making comparisons between navigation algorithms is challenging because of the effort involved in building these systems and the diversity of platforms used by the community; nonetheless, evaluation is critical to understanding progress in the field. In a step towards reproducible evaluation of social navigation algorithms, we propose the Social Environment for Autonomous Navigation (SEAN). SEAN is a high visual fidelity, open source, and extensible social navigation simulation platform which includes a toolkit for evaluation of navigation algorithms. We demonstrate SEAN and its evaluation toolkit in two environments with dynamic pedestrians and using two different robots.},
booktitle = {Proceedings of the 8th International Conference on Human-Agent Interaction},
pages = {281–283},
numpages = {3},
keywords = {social robot navigation, human-robot interaction},
location = {Virtual Event, USA},
series = {HAI '20},
environments={mixed_objectives, embodied},
agents={reinforcement_learning},
evaluation={rule_based},
other={human_agent, simulated_humans}
}
@inproceedings{puig2024habitat,
title={Habitat 3.0: A Co-Habitat for Humans, Avatars, and Robots},
author={Xavier Puig and Eric Undersander and Andrew Szot and Mikael Dallaire Cote and Tsung-Yen Yang and Ruslan Partsey and Ruta Desai and Alexander Clegg and Michal Hlavac and So Yeon Min and Vladim{\'\i}r Vondru{\v{s}} and Theophile Gervet and Vincent-Pierre Berges and John M Turner and Oleksandr Maksymets and Zsolt Kira and Mrinal Kalakrishnan and Jitendra Malik and Devendra Singh Chaplot and Unnat Jain and Dhruv Batra and Akshara Rai and Roozbeh Mottaghi},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
month={10},
url={https://openreview.net/forum?id=4znwzG92CE},
environments={mixed_objectives, embodied},
agents={reinforcement_learning},
evaluation={rule_based},
other={human_agent, simulated_humans}
}
@article{team2024scaling,
title={Scaling Instructable Agents Across Many Simulated Worlds},
author={Team, SIMA and Abi Raad, Maria and Ahuja, Arun and Barros, Catarina and Besse, Frederic and Bolt, Andrew and Bolton, Adrian and Brownfield, Bethanie and Buttimore, Gavin and Cant, Max and others},
year={2024},
month={4},
url={https://arxiv.org/abs/2404.10179v2},
journal={arXiv preprint arXiv:2404.10179},
environments={embodied},
agents={prompting_and_in_context_learning, finetuning},
evaluation={qualitative},
other={human_agent}
}
@article{ma2023large,
title={Large language models play starcraft ii: Benchmarks and a chain of summarization approach},
author={Ma, Weiyu and Mi, Qirui and Yan, Xue and Wu, Yuqiao and Lin, Runji and Zhang, Haifeng and Wang, Jun},
journal={arXiv preprint arXiv:2312.11865},
year={2023},
month={12},
url={https://arxiv.org/abs/2312.11865},
environments={embodied},
agents={prompting_and_in_context_learning, finetuning},
evaluation={qualitative},
other={human_agent}
}
@misc{opengenerativeai2024evaluate,
title={Evaluate LLMs in real time with Street Fighter III},
author={OpenGenerativeAI team},
year={2024},
month={3},
url={https://github.com/OpenGenerativeAI/llm-colosseum},
journal={n/a},
environments={embodied},
agents={prompting_and_in_context_learning},
evaluation={qualitative},
other={human_agent}
}
@misc{zhao2023competeai,
title={CompeteAI: Understanding the Competition Behaviors in Large Language Model-based Agents},
author={Qinlin Zhao and Jindong Wang and Yixuan Zhang and Yiqiao Jin and Kaijie Zhu and Hao Chen and Xing Xie},
environments = {competition, text},
agents = {prompting_and_in_context_learning, two_agents},
evaluation = {rule_based},
url = {https://arxiv.org/abs/2310.17512},
other = {n/a},
year={2023},
eprint={2310.17512},
archivePrefix={arXiv},
primaryClass={cs.AI}
}
#### Virtual Environments
@article{environments/virtual,
title = {This is a specical entry for us to automatically determine the subsection of the paper, please put the real entry below this one},
author = {specical entry},
}
@inproceedings{li2018appinite,
title={Appinite: A multi-modal interface for specifying data descriptions in programming by demonstration using natural language instructions},
author={Li, Toby Jia-Jun and Labutov, Igor and Li, Xiaohan Nancy and Zhang, Xiaoyi and Shi, Wenze and Ding, Wanling and Mitchell, Tom M and Myers, Brad A},
booktitle={2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)},
pages={105--114},
year={2018},
month={3},
organization={IEEE},
url={https://ieeexplore.ieee.org/document/8506506},
environments={virtual},
agents={prompting_and_in_context_learning},
evaluation={human, qualitative},
other={human_agent}
}
@inproceedings{li2019pumice,
title={Pumice: A multi-modal agent that learns concepts and conditionals from natural language and demonstrations},
author={Li, Toby Jia-Jun and Radensky, Marissa and Jia, Justin and Singarajah, Kirielle and Mitchell, Tom M and Myers, Brad A},
booktitle={Proceedings of the 32nd annual ACM symposium on user interface software and technology},
pages={577--589},
year={2019},
month={3},
url={https://dl.acm.org/doi/10.1145/3332165.3347899},
environments={virtual},
agents={prompting_and_in_context_learning},
evaluation={human, qualitative},
other={human_agent}
}
@inproceedings{li2020interactive,
title={Interactive task learning from GUI-grounded natural language instructions and demonstrations},
author={Li, Toby Jia-Jun and Mitchell, Tom and Myers, Brad},
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations},
pages={215--223},
year={2020},
month={9},
url={https://arxiv.org/abs/1909.00031},
environments={virtual},
agents={prompting_and_in_context_learning},
evaluation={human, qualitative},
other={human_agent}
}
@article{yang2023appagent,
title={Appagent: Multimodal agents as smartphone users},
author={Yang, Zhao and Liu, Jiaxuan and Han, Yucheng and Chen, Xin and Huang, Zebiao and Fu, Bin and Yu, Gang},
journal={arXiv preprint arXiv:2312.13771},
year={2023},
month={12},
url={https://arxiv.org/abs/2312.13771},
environments={virtual},
agents={prompting_and_in_context_learning},
evaluation={rule_based},
other={n/a}
}
@article{zhang2024ufo,
title={UFO: A UI-Focused Agent for Windows OS Interaction},
author={Zhang, Chaoyun and Li, Liqun and He, Shilin and Zhang, Xu and Qiao, Bo and Qin, Si and Ma, Minghua and Kang, Yu and Lin, Qingwei and Rajmohan, Saravan and others},
journal={arXiv preprint arXiv:2402.07939},
year={2024},
month={2},
url={https://arxiv.org/abs/2402.07939},
environments={virtual},
agents={prompting_and_in_context_learning},
evaluation={rule_based},
other={n/a}
}
@article{wang2024mobile,
title={Mobile-Agent: Autonomous multi-modal mobile device agent with visual perception},
author={Wang, Junyang and Xu, Haiyang and Ye, Jiabo and Yan, Ming and Shen, Weizhou and Zhang, Ji and Huang, Fei and Sang, Jitao},
journal={arXiv preprint arXiv:2401.16158},
year={2024},
month={1},
url={https://arxiv.org/abs/2401.16158},
environments={virtual},
agents={prompting_and_in_context_learning},
evaluation={rule_based},
other={n/a}
}
@article{wu2024copilot,
title={Os-copilot: Towards generalist computer agents with self-improvement},
author={Wu, Zhiyong and Han, Chengcheng and Ding, Zichen and Weng, Zhenmin and Liu, Zhoumianze and Yao, Shunyu and Yu, Tao and Kong, Lingpeng},
journal={arXiv preprint arXiv:2402.07456},
year={2024},
month={2},
url={https://arxiv.org/abs/2402.07456},
environments={virtual},
agents={prompting_and_in_context_learning},
evaluation={rule_based},
other={n/a}
}
@article{zhou2023webarena,
title={Webarena: A realistic web environment for building autonomous agents},
author={Zhou, Shuyan and Xu, Frank F and Zhu, Hao and Zhou, Xuhui and Lo, Robert and Sridhar, Abishek and Cheng, Xianyi and Bisk, Yonatan and Fried, Daniel and Alon, Uri and others},
journal={arXiv preprint arXiv:2307.13854},
year={2023},
month={7},
url={https://arxiv.org/abs/2307.13854},
environments={virtual},
agents={prompting_and_in_context_learning},
evaluation={rule_based},
other={n/a}
}
@article{koh2024visualwebarena,
title={Visualwebarena: Evaluating multimodal agents on realistic visual web tasks},
author={Koh, Jing Yu and Lo, Robert and Jang, Lawrence and Duvvur, Vikram and Lim, Ming Chong and Huang, Po-Yu and Neubig, Graham and Zhou, Shuyan and Salakhutdinov, Ruslan and Fried, Daniel},
journal={arXiv preprint arXiv:2401.13649},
year={2024},
month={1},
url={https://arxiv.org/abs/2401.13649},
environments={virtual},
agents={prompting_and_in_context_learning},
evaluation={rule_based},
other={n/a}
}
@article{yao2022webshop,
title={Webshop: Towards scalable real-world web interaction with grounded language agents},
author={Yao, Shunyu and Chen, Howard and Yang, John and Narasimhan, Karthik},
journal={Advances in Neural Information Processing Systems},
volume={35},
pages={20744--20757},
year={2022},
month={12},
url={https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf},
environments={virtual},
agents={prompting_and_in_context_learning, finetuning},
evaluation={rule_based},
other={n/a}
}
@inproceedings{humphreys2022data,
title={A data-driven approach for learning to control computers},
author={Humphreys, Peter C and Raposo, David and Pohlen, Tobias and Thornton, Gregory and Chhaparia, Rachita and Muldal, Alistair and Abramson, Josh and Georgiev, Petko and Santoro, Adam and Lillicrap, Timothy},
booktitle={International Conference on Machine Learning},
pages={9466--9482},
year={2022},
month={7},
organization={PMLR},
url={https://arxiv.org/abs/2202.08137},
environments={virtual},
agents={finetuning, reinforcement_learning},
evaluation={rule_based},
other={n/a}
}
@inproceedings{shi2017world,
title={World of bits: An open-domain platform for web-based agents},
author={Shi, Tianlin and Karpathy, Andrej and Fan, Linxi and Hernandez, Jonathan and Liang, Percy},
booktitle={International Conference on Machine Learning},
pages={3135--3144},
year={2017},
month={8},
organization={PMLR},
url={https://proceedings.mlr.press/v70/shi17a/shi17a.pdf},
environments={virtual},
agents={reinforcement_learning},
evaluation={rule_based},
other={n/a}
}
@article{liu2018reinforcement,
title={Reinforcement learning on web interfaces using workflow-guided exploration},
author={Liu, Evan Zheran and Guu, Kelvin and Pasupat, Panupong and Shi, Tianlin and Liang, Percy},
journal={arXiv preprint arXiv:1802.08802},
year={2018},
month={2},
url={https://arxiv.org/abs/1802.08802},
environments={virtual},
agents={reinforcement_learning},
evaluation={rule_based},
other={n/a}
}
@inproceedings{branavan2009reinforcement,
title={Reinforcement learning for mapping instructions to actions},
author={Branavan, Satchuthananthavale RK and Chen, Harr and Zettlemoyer, Luke and Barzilay, Regina},
booktitle={Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP},
pages={82--90},
year={2009},
month={8},
url={https://aclanthology.org/P09-1010/},
environments={virtual},
agents={reinforcement_learning},
evaluation={rule_based},
other={n/a}
}
@article{toyama2021androidenv,
title={Androidenv: A reinforcement learning platform for android},
author={Toyama, Daniel and Hamel, Philippe and Gergely, Anita and Comanici, Gheorghe and Glaese, Amelia and Ahmed, Zafarali and Jackson, Tyler and Mourad, Shibl and Precup, Doina},
journal={arXiv preprint arXiv:2105.13231},
year={2021},
month={5},
url={https://arxiv.org/abs/2105.13231},
environments={virtual},
agents={reinforcement_learning},
evaluation={rule_based},
other={n/a}
}
@article{li2020mapping,
title={Mapping natural language instructions to mobile UI action sequences},
author={Li, Yang and He, Jiacong and Zhou, Xin and Zhang, Yuan and Baldridge, Jason},
journal={arXiv preprint arXiv:2005.03776},
year={2020},
month={5},
url={https://arxiv.org/abs/2005.03776},
environments={virtual},
agents={finetuning},
evaluation={rule_based},
other={n/a}
}
@inproceedings{burns2022dataset,
title={A dataset for interactive vision-language navigation with unknown command feasibility},
author={Burns, Andrea and Arsan, Deniz and Agrawal, Sanjna and Kumar, Ranjitha and Saenko, Kate and Plummer, Bryan A},
booktitle={European Conference on Computer Vision},
pages={312--328},
year={2022},
month={2},
url={https://arxiv.org/abs/2202.02312},
organization={Springer},
environments={virtual},
agents={finetuning},
evaluation={rule_based},
other={n/a}
}
@article{deng2024mind2web,
title={Mind2web: Towards a generalist agent for the web},
author={Deng, Xiang and Gu, Yu and Zheng, Boyuan and Chen, Shijie and Stevens, Sam and Wang, Boshi and Sun, Huan and Su, Yu},
journal={Advances in Neural Information Processing Systems},
volume={36},
year={2024},
month={1},
url={https://arxiv.org/abs/2306.06070},
environments={virtual},
agents={prompting_and_in_context_learning},
evaluation={rule_based},
other={n/a}
}
@article{rawles2023android,
title={Android in the wild: A large-scale dataset for android device control},
author={Rawles, Christopher and Li, Alice and Rodriguez, Daniel and Riva, Oriana and Lillicrap, Timothy},
journal={arXiv preprint arXiv:2307.10088},
year={2023},
month={7},
url={https://arxiv.org/abs/2307.10088},
environments={virtual},
agents={finetuning},
evaluation={rule_based},
other={n/a}
}
@inproceedings{allen2007plow,
title={Plow: A collaborative task learning agent},
author={Allen, James and Chambers, Nathanael and Ferguson, George and Galescu, Lucian and Jung, Hyuckchul and Swift, Mary and Taysom, William},
booktitle={AAAI},
volume={7},
pages={1514--1519},
year={2007},
month={7},
url={https://cdn.aaai.org/AAAI/2007/AAAI07-240.pdf},
environments={virtual},
agents={prompting_and_in_context_learning},
evaluation={human},
other={human_agent}
}
@article{xu2021grounding,
title={Grounding open-domain instructions to automate web support tasks},
author={Xu, Nancy and Masling, Sam and Du, Michael and Campagna, Giovanni and Heck, Larry and Landay, James and Lam, Monica S},
journal={arXiv preprint arXiv:2103.16057},
year={2021},
month={3},
url={https://arxiv.org/abs/2103.16057},
environments={virtual},
agents={finetuning},
evaluation={rule_based},
other={n/a}
}
#### Robotics
@article{environments/robotics,
title = {This is a specical entry for us to automatically determine the subsection of the paper, please put the real entry below this one},
author = {specical entry},
}
@InProceedings{pmlr-v205-xiong23a,
title = {RoboTube: Learning Household Manipulation from Human Videos with Simulated Twin Environments},
author = {Xiong, Haoyu and Fu, Haoyuan and Zhang, Jieyi and Bao, Chen and Zhang, Qiang and Huang, Yongxi and Xu, Wenqiang and Garg, Animesh and Lu, Cewu},
booktitle = {Proceedings of The 6th Conference on Robot Learning},
pages = {1--10},
year = {2023},
editor = {Liu, Karen and Kulic, Dana and Ichnowski, Jeff},
volume = {205},
series = {Proceedings of Machine Learning Research},
month = {12},
publisher = {PMLR},
pdf = {https://proceedings.mlr.press/v205/xiong23a/xiong23a.pdf},
url = {https://proceedings.mlr.press/v205/xiong23a.html},
environments = {implicit_objectives, robotics},
agents = {reinforcement_learning, agents_with_memory},
evaluation = {human, rule_based},
other = {simulated_humans}
}
@inproceedings{saycan2022arxiv,
title={Do As I Can and Not As I Say: Grounding Language in Robotic Affordances},
author={Michael Ahn and Anthony Brohan and Noah Brown and Yevgen Chebotar and Omar Cortes and Byron David and Chelsea Finn and Chuyuan Fu and Keerthana Gopalakrishnan and Karol Hausman and Alex Herzog and Daniel Ho and Jasmine Hsu and Julian Ibarz and Brian Ichter and Alex Irpan and Eric Jang and Rosario Jauregui Ruano and Kyle Jeffrey and Sally Jesmonth and Nikhil Joshi and Ryan Julian and Dmitry Kalashnikov and Yuheng Kuang and Kuang-Huei Lee and Sergey Levine and Yao Lu and Linda Luu and Carolina Parada and Peter Pastor and Jornell Quiambao and Kanishka Rao and Jarek Rettinghouse and Diego Reyes and Pierre Sermanet and Nicolas Sievers and Clayton Tan and Alexander Toshev and Vincent Vanhoucke and Fei Xia and Ted Xiao and Peng Xu and Sichun Xu and Mengyuan Yan and Andy Zeng},
booktitle={arXiv preprint arXiv:2204.01691},
year={2022},
month={8},
url = {https://say-can.github.io/},
environments = {mixed_objectives, implicit_objectives, robotics},
agents = {finetuning, reinforcement_learning, agents_with_memory},
evaluation = {human, rule_based, model_based},
other = {simulated_humans}
}
@inproceedings{huang2022inner,
title={Inner Monologue: Embodied Reasoning through Planning with Language Models},
author={Wenlong Huang and Fei Xia and Ted Xiao and Harris Chan and Jacky Liang and Pete Florence and Andy Zeng and Jonathan Tompson and Igor Mordatch and Yevgen Chebotar and Pierre Sermanet and Noah Brown and Tomas Jackson and Linda Luu and Sergey Levine and Karol Hausman and Brian Ichter},
booktitle={arXiv preprint arXiv:2207.05608},
year={2022},
month={6},
url = {https://arxiv.org/abs/2207.05608},
environments = {mixed_objectives, implicit_objectives, robotics},
agents = {finetuning, reinforcement_learning, agents_with_memory},
evaluation = {human, rule_based, model_based},
other = {simulated_humans}
}
@inproceedings{Wang2023One,
title={One Policy to Dress Them All: Learning to Dress People with Diverse Poses and Garments},
author={Wang, Yufei and Sun, Zhanyi and Erickson, Zackory and Held, David},
booktitle={Robotics: Science and Systems (RSS)},
year={2023},
month={6},
url = {https://arxiv.org/abs/2306.12372},
environments = {robotics},
agents = {reinforcement_learning},
evaluation = {human, rule_based},
other = {human_agent}
}
@misc{wang2023cogail,
title={Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration},
author={Chen Wang and Claudia Pérez-D'Arpino and Danfei Xu and Li Fei-Fei and C. Karen Liu and Silvio Savarese},
year={2023},
month={9},
url = {https://arxiv.org/abs/2108.06038},
eprint={2108.06038},
archivePrefix={arXiv},
primaryClass={cs.RO},
environments = {collaboration, mixed_objectives, robotics},
agents = {two_agents, reinforcement_learning},
evaluation = {human},
other = {human_agent, simulated_humans}
}
@misc{shi2024yell,
title={Yell At Your Robot: Improving On-the-Fly from Language Corrections},
author={Lucy Xiaoyang Shi and Zheyuan Hu and Tony Z. Zhao and Archit Sharma and Karl Pertsch and Jianlan Luo and Sergey Levine and Chelsea Finn},
year={2024},
month={3},
url={https://arxiv.org/abs/2403.12910},
eprint={2403.12910},
archivePrefix={arXiv},
primaryClass={cs.RO},
environments = {collaboration, mixed_objectives, robotics},
agents = {two_agents, finetuning, reinforcement_learning, agents_with_memory},
evaluation = {human},
other = {human_agent}
}
@article{sheridan2016human,
title={Human--robot interaction: status and challenges},
author={Sheridan, Thomas B},
journal={Human factors},
month={4},
url={https://journals.sagepub.com/doi/10.1177/0018720816644364},
volume={58},
number={4},
pages={525--532},
year={2016},
publisher={SAGE Publications Sage CA: Los Angeles, CA},
environments = {collaboration, mixed_objectives, robotics},
agents = {two_agents, finetuning, reinforcement_learning},
evaluation = {human},
other = {human_agent}
}
@article{onnasch2021taxonomy,
title={A taxonomy to structure and analyze human--robot interaction},
author={Onnasch, Linda and Roesler, Eileen},
journal={International Journal of Social Robotics},
volume={13},
number={4},
pages={833--849},
year={2021},
publisher={Springer},
month={6},
url={https://link.springer.com/article/10.1007/s12369-020-00666-5},
environments = {collaboration, mixed_objectives, robotics},
agents = {two_agents},
evaluation = {human},
other = {human_agent}