forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGenArchetype.cpp
410 lines (349 loc) · 15.9 KB
/
GenArchetype.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
//===--- GenArchetype.cpp - Swift IR Generation for Archetype Types -------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation for archetype types in Swift.
//
//===----------------------------------------------------------------------===//
#include "GenArchetype.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Types.h"
#include "swift/IRGen/Linking.h"
#include "swift/SIL/SILValue.h"
#include "swift/SIL/TypeLowering.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/raw_ostream.h"
#include "EnumPayload.h"
#include "Explosion.h"
#include "FixedTypeInfo.h"
#include "GenClass.h"
#include "GenHeap.h"
#include "GenMeta.h"
#include "GenOpaque.h"
#include "GenPoly.h"
#include "GenProto.h"
#include "GenType.h"
#include "HeapTypeInfo.h"
#include "IRGenDebugInfo.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "MetadataRequest.h"
#include "Outlining.h"
#include "ProtocolInfo.h"
#include "ResilientTypeInfo.h"
#include "TypeInfo.h"
using namespace swift;
using namespace irgen;
MetadataResponse
irgen::emitArchetypeTypeMetadataRef(IRGenFunction &IGF,
CanArchetypeType archetype,
DynamicMetadataRequest request) {
// Check for an existing cache entry.
if (auto response = IGF.tryGetLocalTypeMetadata(archetype, request))
return response;
// If that's not present, this must be an associated type.
assert(!archetype->isPrimary() &&
"type metadata for primary archetype was not bound in context");
CanArchetypeType parent(archetype->getParent());
AssociatedType association(archetype->getAssocType());
MetadataResponse response =
emitAssociatedTypeMetadataRef(IGF, parent, association, request);
setTypeMetadataName(IGF.IGM, response.getMetadata(), archetype);
IGF.setScopedLocalTypeMetadata(archetype, response);
return response;
}
namespace {
/// A type implementation for an ArchetypeType, otherwise known as a
/// type variable: for example, Self in a protocol declaration, or T
/// in a generic declaration like foo<T>(x : T) -> T. The critical
/// thing here is that performing an operation involving archetypes
/// is dependent on the witness binding we can see.
class OpaqueArchetypeTypeInfo
: public ResilientTypeInfo<OpaqueArchetypeTypeInfo>
{
OpaqueArchetypeTypeInfo(llvm::Type *type)
: ResilientTypeInfo(type, IsABIAccessible) {}
public:
static const OpaqueArchetypeTypeInfo *create(llvm::Type *type) {
return new OpaqueArchetypeTypeInfo(type);
}
void collectMetadataForOutlining(OutliningMetadataCollector &collector,
SILType T) const override {
// We'll need formal type metadata for this archetype.
collector.collectTypeMetadataForLayout(T);
}
};
/// A type implementation for a class archetype, that is, an archetype
/// bounded by a class protocol constraint. These archetypes can be
/// represented by a refcounted pointer instead of an opaque value buffer.
/// If ObjC interop is disabled, we can use Swift refcounting entry
/// points, otherwise we have to use the unknown ones.
class ClassArchetypeTypeInfo
: public HeapTypeInfo<ClassArchetypeTypeInfo>
{
ReferenceCounting RefCount;
ClassArchetypeTypeInfo(llvm::PointerType *storageType,
Size size, const SpareBitVector &spareBits,
Alignment align,
ReferenceCounting refCount)
: HeapTypeInfo(storageType, size, spareBits, align),
RefCount(refCount)
{}
public:
static const ClassArchetypeTypeInfo *create(llvm::PointerType *storageType,
Size size, const SpareBitVector &spareBits,
Alignment align,
ReferenceCounting refCount) {
return new ClassArchetypeTypeInfo(storageType, size, spareBits, align,
refCount);
}
ReferenceCounting getReferenceCounting() const {
return RefCount;
}
};
class FixedSizeArchetypeTypeInfo
: public PODSingleScalarTypeInfo<FixedSizeArchetypeTypeInfo, LoadableTypeInfo>
{
FixedSizeArchetypeTypeInfo(llvm::Type *type, Size size, Alignment align,
const SpareBitVector &spareBits)
: PODSingleScalarTypeInfo(type, size, spareBits, align) {}
public:
static const FixedSizeArchetypeTypeInfo *
create(llvm::Type *type, Size size, Alignment align,
const SpareBitVector &spareBits) {
return new FixedSizeArchetypeTypeInfo(type, size, align, spareBits);
}
};
} // end anonymous namespace
/// Emit a single protocol witness table reference.
llvm::Value *irgen::emitArchetypeWitnessTableRef(IRGenFunction &IGF,
CanArchetypeType archetype,
ProtocolDecl *protocol) {
assert(Lowering::TypeConverter::protocolRequiresWitnessTable(protocol) &&
"looking up witness table for protocol that doesn't have one");
// The following approach assumes that a protocol will only appear in
// an archetype's conformsTo array if the archetype is either explicitly
// constrained to conform to that protocol (in which case we should have
// a cache entry for it) or there's an associated type declaration with
// that protocol listed as a direct requirement.
auto localDataKind =
LocalTypeDataKind::forAbstractProtocolWitnessTable(protocol);
// Check immediately for an existing cache entry.
// TODO: don't give this absolute precedence over other access paths.
auto wtable = IGF.tryGetLocalTypeData(archetype, localDataKind);
if (wtable) return wtable;
// If we don't have an environment, this must be an implied witness table
// reference.
// FIXME: eliminate this path when opened types have generic environments.
auto environment = archetype->getGenericEnvironment();
if (!environment) {
assert(archetype->isOpenedExistential() &&
"non-opened archetype lacking generic environment?");
SmallVector<ProtocolEntry, 4> entries;
for (auto p : archetype->getConformsTo()) {
const ProtocolInfo &impl =
IGF.IGM.getProtocolInfo(p, ProtocolInfoKind::RequirementSignature);
entries.push_back(ProtocolEntry(p, impl));
}
return emitImpliedWitnessTableRef(IGF, entries, protocol,
[&](unsigned index) -> llvm::Value* {
auto localDataKind =
LocalTypeDataKind::forAbstractProtocolWitnessTable(
entries[index].getProtocol());
auto wtable = IGF.tryGetLocalTypeData(archetype, localDataKind);
assert(wtable &&
"opened type without local type data for direct conformance?");
return wtable;
});
}
// Otherwise, ask the generic signature for the environment for the best
// path to the conformance.
// TODO: this isn't necessarily optimal if the direct conformance isn't
// concretely available; we really ought to be comparing the full paths
// to this conformance from concrete sources.
auto signature = environment->getGenericSignature()->getCanonicalSignature();
auto archetypeDepType = archetype->getInterfaceType();
auto astPath = signature->getConformanceAccessPath(archetypeDepType,
protocol);
auto i = astPath.begin(), e = astPath.end();
assert(i != e && "empty path!");
// The first entry in the path is a direct requirement of the signature,
// for which we should always have local type data available.
CanType rootArchetype =
environment->mapTypeIntoContext(i->first)->getCanonicalType();
ProtocolDecl *rootProtocol = i->second;
// Turn the rest of the path into a MetadataPath.
auto lastProtocol = rootProtocol;
MetadataPath path;
while (++i != e) {
auto &entry = *i;
CanType depType = CanType(entry.first);
ProtocolDecl *requirement = entry.second;
const ProtocolInfo &lastPI =
IGF.IGM.getProtocolInfo(lastProtocol,
ProtocolInfoKind::RequirementSignature);
// If it's a type parameter, it's self, and this is a base protocol
// requirement.
if (isa<GenericTypeParamType>(depType)) {
assert(depType->isEqual(lastProtocol->getSelfInterfaceType()));
WitnessIndex index = lastPI.getBaseIndex(requirement);
path.addInheritedProtocolComponent(index);
// Otherwise, it's an associated conformance requirement.
} else {
AssociatedConformance association(lastProtocol, depType, requirement);
WitnessIndex index = lastPI.getAssociatedConformanceIndex(association);
path.addAssociatedConformanceComponent(index);
}
lastProtocol = requirement;
}
assert(lastProtocol == protocol);
auto rootWTable = IGF.tryGetLocalTypeData(rootArchetype,
LocalTypeDataKind::forAbstractProtocolWitnessTable(rootProtocol));
assert(rootWTable && "root witness table not bound in local context!");
wtable = path.followFromWitnessTable(IGF, rootArchetype,
ProtocolConformanceRef(rootProtocol),
MetadataResponse::forComplete(rootWTable),
/*request*/ MetadataState::Complete,
nullptr).getMetadata();
return wtable;
}
MetadataResponse
irgen::emitAssociatedTypeMetadataRef(IRGenFunction &IGF,
CanArchetypeType origin,
AssociatedType association,
DynamicMetadataRequest request) {
// Find the conformance of the origin to the associated type's protocol.
llvm::Value *wtable = emitArchetypeWitnessTableRef(IGF, origin,
association.getSourceProtocol());
// Find the origin's type metadata.
llvm::Value *originMetadata =
emitArchetypeTypeMetadataRef(IGF, origin, MetadataState::Abstract)
.getMetadata();
return emitAssociatedTypeMetadataRef(IGF, originMetadata, wtable,
association, request);
}
const TypeInfo *TypeConverter::convertArchetypeType(ArchetypeType *archetype) {
assert(isExemplarArchetype(archetype) && "lowering non-exemplary archetype");
auto layout = archetype->getLayoutConstraint();
// If the archetype is class-constrained, use a class pointer
// representation.
if (archetype->requiresClass() ||
(layout && layout->isRefCounted())) {
auto refcount = archetype->getReferenceCounting();
llvm::PointerType *reprTy;
// If the archetype has a superclass constraint, it has at least the
// retain semantics of its superclass, and it can be represented with
// the supertype's pointer type.
if (auto super = archetype->getSuperclass()) {
auto &superTI = IGM.getTypeInfoForUnlowered(super);
reprTy = cast<llvm::PointerType>(superTI.StorageType);
} else {
if (refcount == ReferenceCounting::Native) {
reprTy = IGM.RefCountedPtrTy;
} else {
reprTy = IGM.UnknownRefCountedPtrTy;
}
}
// As a hack, assume class archetypes never have spare bits. There's a
// corresponding hack in MultiPayloadEnumImplStrategy::completeEnumTypeLayout
// to ignore spare bits of dependent-typed payloads.
auto spareBits =
SpareBitVector::getConstant(IGM.getPointerSize().getValueInBits(), false);
return ClassArchetypeTypeInfo::create(reprTy,
IGM.getPointerSize(),
spareBits,
IGM.getPointerAlignment(),
refcount);
}
// If the archetype is trivial fixed-size layout-constrained, use a fixed size
// representation.
if (layout && layout->isFixedSizeTrivial()) {
Size size(layout->getTrivialSizeInBytes());
auto layoutAlignment = layout->getAlignmentInBytes();
assert(layoutAlignment && "layout constraint alignment should not be 0");
Alignment align(layoutAlignment);
auto spareBits =
SpareBitVector::getConstant(size.getValueInBits(), false);
// Get an integer type of the required size.
auto ProperlySizedIntTy = SILType::getBuiltinIntegerType(
size.getValueInBits(), IGM.getSwiftModule()->getASTContext());
auto storageType = IGM.getStorageType(ProperlySizedIntTy);
return FixedSizeArchetypeTypeInfo::create(storageType, size, align,
spareBits);
}
// If the archetype is a trivial layout-constrained, use a POD
// representation. This type is not loadable, but it is known
// to be a POD.
if (layout && layout->isAddressOnlyTrivial()) {
// TODO: Create NonFixedSizeArchetypeTypeInfo and return it.
}
// Otherwise, for now, always use an opaque indirect type.
llvm::Type *storageType = IGM.OpaquePtrTy->getElementType();
return OpaqueArchetypeTypeInfo::create(storageType);
}
static void setMetadataRef(IRGenFunction &IGF,
ArchetypeType *archetype,
llvm::Value *metadata,
MetadataState metadataState) {
assert(metadata->getType() == IGF.IGM.TypeMetadataPtrTy);
IGF.setUnscopedLocalTypeMetadata(CanType(archetype),
MetadataResponse::forBounded(metadata, metadataState));
}
static void setWitnessTable(IRGenFunction &IGF,
ArchetypeType *archetype,
unsigned protocolIndex,
llvm::Value *wtable) {
assert(wtable->getType() == IGF.IGM.WitnessTablePtrTy);
assert(protocolIndex < archetype->getConformsTo().size());
auto protocol = archetype->getConformsTo()[protocolIndex];
IGF.setUnscopedLocalTypeData(CanType(archetype),
LocalTypeDataKind::forAbstractProtocolWitnessTable(protocol),
wtable);
}
/// Inform IRGenFunction that the given archetype has the given value
/// witness value within this scope.
void IRGenFunction::bindArchetype(ArchetypeType *archetype,
llvm::Value *metadata,
MetadataState metadataState,
ArrayRef<llvm::Value*> wtables) {
// Set the metadata pointer.
setTypeMetadataName(IGM, metadata, CanType(archetype));
setMetadataRef(*this, archetype, metadata, metadataState);
// Set the protocol witness tables.
unsigned wtableI = 0;
for (unsigned i = 0, e = archetype->getConformsTo().size(); i != e; ++i) {
auto proto = archetype->getConformsTo()[i];
if (!Lowering::TypeConverter::protocolRequiresWitnessTable(proto))
continue;
auto wtable = wtables[wtableI++];
setProtocolWitnessTableName(IGM, wtable, CanType(archetype), proto);
setWitnessTable(*this, archetype, i, wtable);
}
assert(wtableI == wtables.size());
}
llvm::Value *irgen::emitDynamicTypeOfOpaqueArchetype(IRGenFunction &IGF,
Address addr,
SILType type) {
auto archetype = type.castTo<ArchetypeType>();
// Acquire the archetype's static metadata.
llvm::Value *metadata =
emitArchetypeTypeMetadataRef(IGF, archetype, MetadataState::Complete)
.getMetadata();
return IGF.Builder.CreateCall(IGF.IGM.getGetDynamicTypeFn(),
{addr.getAddress(), metadata,
llvm::ConstantInt::get(IGF.IGM.Int1Ty, 0)});
}