forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIRGenFunction.h
671 lines (564 loc) · 28.3 KB
/
IRGenFunction.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
//===--- IRGenFunction.h - IR Generation for Swift Functions ----*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the structure used to generate the IR body of a
// function.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_IRGEN_IRGENFUNCTION_H
#define SWIFT_IRGEN_IRGENFUNCTION_H
#include "swift/Basic/LLVM.h"
#include "swift/AST/Type.h"
#include "swift/SIL/SILLocation.h"
#include "swift/SIL/SILType.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/IR/CallingConv.h"
#include "IRBuilder.h"
#include "LocalTypeDataKind.h"
#include "DominancePoint.h"
namespace llvm {
class AllocaInst;
class CallSite;
class Constant;
class Function;
}
namespace swift {
class ArchetypeType;
class IRGenOptions;
class SILDebugScope;
class SILType;
class SourceLoc;
enum class MetadataState : size_t;
namespace Lowering {
class TypeConverter;
}
namespace irgen {
class DynamicMetadataRequest;
class Explosion;
class FunctionRef;
class HeapLayout;
class HeapNonFixedOffsets;
class IRGenModule;
class LinkEntity;
class LocalTypeDataCache;
class MetadataResponse;
class Scope;
class TypeInfo;
enum class ValueWitness : unsigned;
/// IRGenFunction - Primary class for emitting LLVM instructions for a
/// specific function.
class IRGenFunction {
public:
IRGenModule &IGM;
IRBuilder Builder;
/// If != OptimizationMode::NotSet, the optimization mode specified with an
/// function attribute.
OptimizationMode OptMode;
llvm::Function *CurFn;
ModuleDecl *getSwiftModule() const;
SILModule &getSILModule() const;
Lowering::TypeConverter &getSILTypes() const;
const IRGenOptions &getOptions() const;
IRGenFunction(IRGenModule &IGM, llvm::Function *fn,
OptimizationMode Mode = OptimizationMode::NotSet,
const SILDebugScope *DbgScope = nullptr,
Optional<SILLocation> DbgLoc = None);
~IRGenFunction();
void unimplemented(SourceLoc Loc, StringRef Message);
friend class Scope;
//--- Function prologue and epilogue -------------------------------------------
public:
Explosion collectParameters();
void emitScalarReturn(SILType resultTy, Explosion &scalars,
bool isSwiftCCReturn, bool isOutlined);
void emitScalarReturn(llvm::Type *resultTy, Explosion &scalars);
void emitBBForReturn();
bool emitBranchToReturnBB();
/// Return the error result slot, given an error type. There's
/// always only one error type.
Address getErrorResultSlot(SILType errorType);
/// Return the error result slot provided by the caller.
Address getCallerErrorResultSlot();
/// Set the error result slot.
void setErrorResultSlot(llvm::Value *address);
/// Are we currently emitting a coroutine?
bool isCoroutine() {
return CoroutineHandle != nullptr;
}
llvm::Value *getCoroutineHandle() {
assert(isCoroutine());
return CoroutineHandle;
}
void setCoroutineHandle(llvm::Value *handle) {
assert(CoroutineHandle == nullptr && "already set handle");
assert(handle != nullptr && "setting a null handle");
CoroutineHandle = handle;
}
private:
void emitPrologue();
void emitEpilogue();
Address ReturnSlot;
llvm::BasicBlock *ReturnBB;
llvm::Value *ErrorResultSlot = nullptr;
llvm::Value *CoroutineHandle = nullptr;
//--- Helper methods -----------------------------------------------------------
public:
/// Returns the optimization mode for the function. If no mode is set for the
/// function, returns the global mode, i.e. the mode in IRGenOptions.
OptimizationMode getEffectiveOptimizationMode() const;
/// Returns true if this function should be optimized for size.
bool optimizeForSize() const {
return getEffectiveOptimizationMode() == OptimizationMode::ForSize;
}
Address createAlloca(llvm::Type *ty, Alignment align,
const llvm::Twine &name = "");
Address createAlloca(llvm::Type *ty, llvm::Value *arraySize, Alignment align,
const llvm::Twine &name = "");
Address createFixedSizeBufferAlloca(const llvm::Twine &name);
StackAddress emitDynamicAlloca(SILType type, const llvm::Twine &name = "");
StackAddress emitDynamicAlloca(llvm::Type *eltTy, llvm::Value *arraySize,
Alignment align,
const llvm::Twine &name = "");
void emitDeallocateDynamicAlloca(StackAddress address);
llvm::BasicBlock *createBasicBlock(const llvm::Twine &Name);
const TypeInfo &getTypeInfoForUnlowered(Type subst);
const TypeInfo &getTypeInfoForUnlowered(AbstractionPattern orig, Type subst);
const TypeInfo &getTypeInfoForUnlowered(AbstractionPattern orig,
CanType subst);
const TypeInfo &getTypeInfoForLowered(CanType T);
const TypeInfo &getTypeInfo(SILType T);
void emitMemCpy(llvm::Value *dest, llvm::Value *src,
Size size, Alignment align);
void emitMemCpy(llvm::Value *dest, llvm::Value *src,
llvm::Value *size, Alignment align);
void emitMemCpy(Address dest, Address src, Size size);
void emitMemCpy(Address dest, Address src, llvm::Value *size);
llvm::Value *emitByteOffsetGEP(llvm::Value *base, llvm::Value *offset,
llvm::Type *objectType,
const llvm::Twine &name = "");
Address emitByteOffsetGEP(llvm::Value *base, llvm::Value *offset,
const TypeInfo &type,
const llvm::Twine &name = "");
Address emitAddressAtOffset(llvm::Value *base, Offset offset,
llvm::Type *objectType,
Alignment objectAlignment,
const llvm::Twine &name = "");
llvm::Value *emitInvariantLoad(Address address,
const llvm::Twine &name = "");
void emitStoreOfRelativeIndirectablePointer(llvm::Value *value,
Address addr,
bool isFar);
llvm::Value *
emitLoadOfRelativeIndirectablePointer(Address addr, bool isFar,
llvm::PointerType *expectedType,
const llvm::Twine &name = "");
llvm::Value *emitAllocObjectCall(llvm::Value *metadata, llvm::Value *size,
llvm::Value *alignMask,
const llvm::Twine &name = "");
llvm::Value *emitInitStackObjectCall(llvm::Value *metadata,
llvm::Value *object,
const llvm::Twine &name = "");
llvm::Value *emitInitStaticObjectCall(llvm::Value *metadata,
llvm::Value *object,
const llvm::Twine &name = "");
llvm::Value *emitVerifyEndOfLifetimeCall(llvm::Value *object,
const llvm::Twine &name = "");
llvm::Value *emitAllocRawCall(llvm::Value *size, llvm::Value *alignMask,
const llvm::Twine &name ="");
void emitDeallocRawCall(llvm::Value *pointer, llvm::Value *size,
llvm::Value *alignMask);
void emitAllocBoxCall(llvm::Value *typeMetadata,
llvm::Value *&box,
llvm::Value *&valueAddress);
void emitMakeBoxUniqueCall(llvm::Value *box, llvm::Value *typeMetadata,
llvm::Value *alignMask, llvm::Value *&outBox,
llvm::Value *&outValueAddress);
void emitDeallocBoxCall(llvm::Value *box, llvm::Value *typeMetadata);
void emitTSanInoutAccessCall(llvm::Value *address);
llvm::Value *emitProjectBoxCall(llvm::Value *box, llvm::Value *typeMetadata);
llvm::Value *emitAllocEmptyBoxCall();
// Emit a call to the given generic type metadata access function.
MetadataResponse emitGenericTypeMetadataAccessFunctionCall(
llvm::Function *accessFunction,
ArrayRef<llvm::Value *> args,
DynamicMetadataRequest request);
// Emit a reference to the canonical type metadata record for the given AST
// type. This can be used to identify the type at runtime. For types with
// abstraction difference, the metadata contains the layout information for
// values in the maximally-abstracted representation of the type; this is
// correct for all uses of reabstractable values in opaque contexts.
llvm::Value *emitTypeMetadataRef(CanType type);
/// Emit a reference to the canonical type metadata record for the given
/// formal type. The metadata is only required to be abstract; that is,
/// you cannot use the result for layout.
llvm::Value *emitAbstractTypeMetadataRef(CanType type);
MetadataResponse emitTypeMetadataRef(CanType type,
DynamicMetadataRequest request);
// Emit a reference to a metadata object that can be used for layout, but
// cannot be used to identify a type. This will produce a layout appropriate
// to the abstraction level of the given type. It may be able to avoid runtime
// calls if there is a standard metadata object with the correct layout for
// the type.
//
// TODO: It might be better to return just a value witness table reference
// here, since for some types it's easier to get a shared reference to one
// than a metadata reference, and it would be more type-safe.
llvm::Value *emitTypeMetadataRefForLayout(SILType type);
llvm::Value *emitTypeMetadataRefForLayout(SILType type,
DynamicMetadataRequest request);
llvm::Value *emitValueWitnessTableRef(SILType type,
llvm::Value **metadataSlot = nullptr);
llvm::Value *emitValueWitnessTableRef(SILType type,
DynamicMetadataRequest request,
llvm::Value **metadataSlot = nullptr);
llvm::Value *emitValueWitnessTableRefForMetadata(llvm::Value *metadata);
llvm::Value *emitValueWitnessValue(SILType type, ValueWitness index);
FunctionPointer emitValueWitnessFunctionRef(SILType type,
llvm::Value *&metadataSlot,
ValueWitness index);
/// Emit a load of a reference to the given Objective-C selector.
llvm::Value *emitObjCSelectorRefLoad(StringRef selector);
/// Return the SILDebugScope for this function.
const SILDebugScope *getDebugScope() const { return DbgScope; }
llvm::Value *coerceValue(llvm::Value *value, llvm::Type *toTy,
const llvm::DataLayout &);
/// Mark a load as invariant.
void setInvariantLoad(llvm::LoadInst *load);
/// Mark a load as dereferenceable to `size` bytes.
void setDereferenceableLoad(llvm::LoadInst *load, unsigned size);
/// Emit a non-mergeable trap call, optionally followed by a terminator.
void emitTrap(bool EmitUnreachable);
private:
llvm::Instruction *AllocaIP;
const SILDebugScope *DbgScope;
//--- Reference-counting methods -----------------------------------------------
public:
// Returns the default atomicity of the module.
Atomicity getDefaultAtomicity();
llvm::Value *emitUnmanagedAlloc(const HeapLayout &layout,
const llvm::Twine &name,
llvm::Constant *captureDescriptor,
const HeapNonFixedOffsets *offsets = 0);
// Functions that don't care about the reference-counting style.
void emitFixLifetime(llvm::Value *value);
// Routines that are generic over the reference-counting style:
// - strong references
void emitStrongRetain(llvm::Value *value, ReferenceCounting refcounting,
Atomicity atomicity);
void emitStrongRelease(llvm::Value *value, ReferenceCounting refcounting,
Atomicity atomicity);
llvm::Value *emitLoadRefcountedPtr(Address addr, ReferenceCounting style);
llvm::Value *getReferenceStorageExtraInhabitantIndex(Address src,
ReferenceOwnership ownership,
ReferenceCounting style);
void storeReferenceStorageExtraInhabitant(llvm::Value *index,
Address dest,
ReferenceOwnership ownership,
ReferenceCounting style);
#define NEVER_LOADABLE_CHECKED_REF_STORAGE_HELPER(Name, Kind) \
void emit##Kind##Name##Init(llvm::Value *val, Address dest); \
void emit##Kind##Name##Assign(llvm::Value *value, Address dest); \
void emit##Kind##Name##CopyInit(Address destAddr, Address srcAddr); \
void emit##Kind##Name##TakeInit(Address destAddr, Address srcAddr); \
void emit##Kind##Name##CopyAssign(Address destAddr, Address srcAddr); \
void emit##Kind##Name##TakeAssign(Address destAddr, Address srcAddr); \
llvm::Value *emit##Kind##Name##LoadStrong(Address src, \
llvm::Type *resultType); \
llvm::Value *emit##Kind##Name##TakeStrong(Address src, \
llvm::Type *resultType); \
void emit##Kind##Name##Destroy(Address addr);
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE_HELPER(Name, Kind) \
void emit##Kind##Name##Retain(llvm::Value *value, Atomicity atomicity); \
void emit##Kind##Name##Release(llvm::Value *value, Atomicity atomicity); \
void emit##Kind##StrongRetain##Name(llvm::Value *value, Atomicity atomicity);\
void emit##Kind##StrongRetainAnd##Name##Release(llvm::Value *value, \
Atomicity atomicity);
#define NEVER_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
NEVER_LOADABLE_CHECKED_REF_STORAGE_HELPER(Name, Native) \
NEVER_LOADABLE_CHECKED_REF_STORAGE_HELPER(Name, Unknown) \
void emit##Name##Init(llvm::Value *val, Address dest, ReferenceCounting style); \
void emit##Name##Assign(llvm::Value *value, Address dest, \
ReferenceCounting style); \
void emit##Name##CopyInit(Address destAddr, Address srcAddr, \
ReferenceCounting style); \
void emit##Name##TakeInit(Address destAddr, Address srcAddr, \
ReferenceCounting style); \
void emit##Name##CopyAssign(Address destAddr, Address srcAddr, \
ReferenceCounting style); \
void emit##Name##TakeAssign(Address destAddr, Address srcAddr, \
ReferenceCounting style); \
llvm::Value *emit##Name##LoadStrong(Address src, llvm::Type *resultType, \
ReferenceCounting style); \
llvm::Value *emit##Name##TakeStrong(Address src, llvm::Type *resultType, \
ReferenceCounting style); \
void emit##Name##Destroy(Address addr, ReferenceCounting style);
#define SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
NEVER_LOADABLE_CHECKED_REF_STORAGE(Name, "...") \
ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE_HELPER(Name, Native) \
ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE_HELPER(Name, Unknown) \
void emit##Name##Retain(llvm::Value *value, ReferenceCounting style, \
Atomicity atomicity); \
void emit##Name##Release(llvm::Value *value, ReferenceCounting style, \
Atomicity atomicity); \
void emitStrongRetain##Name(llvm::Value *value, ReferenceCounting style, \
Atomicity atomicity); \
void emitStrongRetainAnd##Name##Release(llvm::Value *value, \
ReferenceCounting style, \
Atomicity atomicity);
#define ALWAYS_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE_HELPER(Name, Native) \
void emit##Name##Retain(llvm::Value *value, ReferenceCounting style, \
Atomicity atomicity) { \
assert(style == ReferenceCounting::Native); \
emitNative##Name##Retain(value, atomicity); \
} \
void emit##Name##Release(llvm::Value *value, ReferenceCounting style, \
Atomicity atomicity) { \
assert(style == ReferenceCounting::Native); \
emitNative##Name##Release(value, atomicity); \
} \
void emitStrongRetain##Name(llvm::Value *value, ReferenceCounting style, \
Atomicity atomicity) { \
assert(style == ReferenceCounting::Native); \
emitNativeStrongRetain##Name(value, atomicity); \
} \
void emitStrongRetainAnd##Name##Release(llvm::Value *value, \
ReferenceCounting style, \
Atomicity atomicity) { \
assert(style == ReferenceCounting::Native); \
emitNativeStrongRetainAnd##Name##Release(value, atomicity); \
}
#include "swift/AST/ReferenceStorage.def"
#undef NEVER_LOADABLE_CHECKED_REF_STORAGE_HELPER
#undef ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE_HELPER
// Routines for the Swift native reference-counting style.
// - strong references
void emitNativeStrongAssign(llvm::Value *value, Address addr);
void emitNativeStrongInit(llvm::Value *value, Address addr);
void emitNativeStrongRetain(llvm::Value *value, Atomicity atomicity);
void emitNativeStrongRelease(llvm::Value *value, Atomicity atomicity);
void emitNativeSetDeallocating(llvm::Value *value);
// Routines for the ObjC reference-counting style.
void emitObjCStrongRetain(llvm::Value *value);
llvm::Value *emitObjCRetainCall(llvm::Value *value);
llvm::Value *emitObjCAutoreleaseCall(llvm::Value *value);
void emitObjCStrongRelease(llvm::Value *value);
llvm::Value *emitBlockCopyCall(llvm::Value *value);
void emitBlockRelease(llvm::Value *value);
// Routines for an unknown reference-counting style (meaning,
// dynamically something compatible with either the ObjC or Swift styles).
// - strong references
void emitUnknownStrongRetain(llvm::Value *value, Atomicity atomicity);
void emitUnknownStrongRelease(llvm::Value *value, Atomicity atomicity);
// Routines for the Builtin.NativeObject reference-counting style.
void emitBridgeStrongRetain(llvm::Value *value, Atomicity atomicity);
void emitBridgeStrongRelease(llvm::Value *value, Atomicity atomicity);
// Routines for the ErrorType reference-counting style.
void emitErrorStrongRetain(llvm::Value *value);
void emitErrorStrongRelease(llvm::Value *value);
llvm::Value *emitIsUniqueCall(llvm::Value *value, SourceLoc loc,
bool isNonNull);
llvm::Value *emitIsEscapingClosureCall(llvm::Value *value, SourceLoc loc,
unsigned verificationType);
//--- Expression emission
//------------------------------------------------------
public:
void emitFakeExplosion(const TypeInfo &type, Explosion &explosion);
//--- Declaration emission -----------------------------------------------------
public:
void bindArchetype(ArchetypeType *type,
llvm::Value *metadata,
MetadataState metadataState,
ArrayRef<llvm::Value*> wtables);
//--- Type emission ------------------------------------------------------------
public:
/// Look up a local type metadata reference, returning a null response
/// if no entry was found which can satisfy the request. This may need
/// emit code to materialize the reference.
///
/// This does a look up for a formal ("AST") type. If you are looking for
/// type metadata that will work for working with a representation
/// ("lowered", "SIL") type, use getGetLocalTypeMetadataForLayout.
MetadataResponse tryGetLocalTypeMetadata(CanType type,
DynamicMetadataRequest request);
/// Look up a local type data reference, returning null if no entry was
/// found. This may need to emit code to materialize the reference.
///
/// The data kind cannot be for type metadata; use tryGetLocalTypeMetadata
/// for that.
llvm::Value *tryGetLocalTypeData(CanType type, LocalTypeDataKind kind);
/// The same as tryGetLocalTypeMetadata, but for representation-compatible
/// "layout" metadata. The returned metadata may not be for a type that
/// has anything to do with the formal type that was lowered to the given
/// type; however, it is guaranteed to have equivalent characteristics
/// in terms of layout, spare bits, POD-ness, and so on.
///
/// We use a separate function name for this to clarify that you should
/// only ever be looking for type metadata for a lowered SILType for the
/// purposes of local manipulation, such as the layout of a type or
/// emitting a value-copy.
MetadataResponse tryGetLocalTypeMetadataForLayout(SILType type,
DynamicMetadataRequest request);
/// The same as tryGetForLocalTypeData, but for representation-compatible
/// "layout" metadata. See the comment on tryGetLocalTypeMetadataForLayout.
///
/// The data kind cannot be for type metadata; use
/// tryGetLocalTypeMetadataForLayout for that.
llvm::Value *tryGetLocalTypeDataForLayout(SILType type,
LocalTypeDataKind kind);
/// Add a local type metadata reference at a point which definitely
/// dominates all of its uses.
void setUnscopedLocalTypeMetadata(CanType type,
MetadataResponse response);
/// Add a local type data reference at a point which definitely
/// dominates all of its uses.
///
/// The data kind cannot be for type metadata; use
/// setUnscopedLocalTypeMetadata for that.
void setUnscopedLocalTypeData(CanType type, LocalTypeDataKind kind,
llvm::Value *data);
/// Add a local type metadata reference that is valid at the current
/// insertion point.
void setScopedLocalTypeMetadata(CanType type, MetadataResponse value);
/// Add a local type data reference that is valid at the current
/// insertion point.
///
/// The data kind cannot be for type metadata; use setScopedLocalTypeMetadata
/// for that.
void setScopedLocalTypeData(CanType type, LocalTypeDataKind kind,
llvm::Value *data);
/// The same as setScopedLocalTypeMetadata, but for representation-compatible
/// "layout" metadata. See the comment on tryGetLocalTypeMetadataForLayout.
void setScopedLocalTypeMetadataForLayout(SILType type, MetadataResponse value);
/// The same as setScopedLocalTypeData, but for representation-compatible
/// "layout" metadata. See the comment on tryGetLocalTypeMetadataForLayout.
///
/// The data kind cannot be for type metadata; use
/// setScopedLocalTypeMetadataForLayout for that.
void setScopedLocalTypeDataForLayout(SILType type, LocalTypeDataKind kind,
llvm::Value *data);
// These are for the private use of the LocalTypeData subsystem.
MetadataResponse tryGetLocalTypeMetadata(LocalTypeDataKey key,
DynamicMetadataRequest request);
llvm::Value *tryGetLocalTypeData(LocalTypeDataKey key);
MetadataResponse tryGetConcreteLocalTypeData(LocalTypeDataKey key,
DynamicMetadataRequest request);
void setUnscopedLocalTypeData(LocalTypeDataKey key, MetadataResponse value);
void setScopedLocalTypeData(LocalTypeDataKey key, MetadataResponse value);
/// Given a concrete type metadata node, add all the local type data
/// that we can reach from it.
void bindLocalTypeDataFromTypeMetadata(CanType type, IsExact_t isExact,
llvm::Value *metadata,
MetadataState metadataState);
/// Given the witness table parameter, bind local type data for
/// the witness table itself and any conditional requirements.
void bindLocalTypeDataFromSelfWitnessTable(
const ProtocolConformance *conformance,
llvm::Value *selfTable,
llvm::function_ref<CanType (CanType)> mapTypeIntoContext);
void setDominanceResolver(DominanceResolverFunction resolver) {
assert(DominanceResolver == nullptr);
DominanceResolver = resolver;
}
bool isActiveDominancePointDominatedBy(DominancePoint point) {
// If the point is universal, it dominates.
if (point.isUniversal()) return true;
assert(!ActiveDominancePoint.isUniversal() &&
"active dominance point is universal but there exists a"
"non-universal point?");
// If we don't have a resolver, we're emitting a simple helper
// function; just assume dominance.
if (!DominanceResolver) return true;
// Otherwise, ask the resolver.
return DominanceResolver(*this, ActiveDominancePoint, point);
}
/// Is the current dominance point conditional in some way not
/// tracked by the active dominance point?
///
/// This should only be used by the local type data cache code.
bool isConditionalDominancePoint() const {
return ConditionalDominance != nullptr;
}
void registerConditionalLocalTypeDataKey(LocalTypeDataKey key) {
assert(ConditionalDominance != nullptr &&
"not in a conditional dominance scope");
ConditionalDominance->registerConditionalLocalTypeDataKey(key);
}
/// Return the currently-active dominance point.
DominancePoint getActiveDominancePoint() const {
return ActiveDominancePoint;
}
/// A RAII object for temporarily changing the dominance of the active
/// definition point.
class DominanceScope {
IRGenFunction &IGF;
DominancePoint OldDominancePoint;
public:
explicit DominanceScope(IRGenFunction &IGF, DominancePoint newPoint)
: IGF(IGF), OldDominancePoint(IGF.ActiveDominancePoint) {
IGF.ActiveDominancePoint = newPoint;
assert(!newPoint.isOrdinary() || IGF.DominanceResolver);
}
DominanceScope(const DominanceScope &other) = delete;
DominanceScope &operator=(const DominanceScope &other) = delete;
~DominanceScope() {
IGF.ActiveDominancePoint = OldDominancePoint;
}
};
/// A RAII object for temporarily suppressing type-data caching at the
/// active definition point. Do this if you're adding local control flow
/// that isn't modeled by the dominance system.
class ConditionalDominanceScope {
IRGenFunction &IGF;
ConditionalDominanceScope *OldScope;
SmallVector<LocalTypeDataKey, 2> RegisteredKeys;
public:
explicit ConditionalDominanceScope(IRGenFunction &IGF)
: IGF(IGF), OldScope(IGF.ConditionalDominance) {
IGF.ConditionalDominance = this;
}
ConditionalDominanceScope(const ConditionalDominanceScope &other) = delete;
ConditionalDominanceScope &operator=(const ConditionalDominanceScope &other)
= delete;
void registerConditionalLocalTypeDataKey(LocalTypeDataKey key) {
RegisteredKeys.push_back(key);
}
~ConditionalDominanceScope();
};
/// The kind of value LocalSelf is.
enum LocalSelfKind {
/// An object reference.
ObjectReference,
/// A Swift metatype.
SwiftMetatype,
/// An ObjC metatype.
ObjCMetatype,
};
llvm::Value *getLocalSelfMetadata();
void setLocalSelfMetadata(llvm::Value *value, LocalSelfKind kind);
private:
LocalTypeDataCache &getOrCreateLocalTypeData();
void destroyLocalTypeData();
LocalTypeDataCache *LocalTypeData = nullptr;
/// The dominance resolver. This can be set at most once; when it's not
/// set, this emission must never have a non-null active definition point.
DominanceResolverFunction DominanceResolver = nullptr;
DominancePoint ActiveDominancePoint = DominancePoint::universal();
ConditionalDominanceScope *ConditionalDominance = nullptr;
/// The value that satisfies metadata lookups for dynamic Self.
llvm::Value *LocalSelf = nullptr;
LocalSelfKind SelfKind;
};
using ConditionalDominanceScope = IRGenFunction::ConditionalDominanceScope;
} // end namespace irgen
} // end namespace swift
#endif