forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDynamicCasts.cpp
1221 lines (1045 loc) · 46.1 KB
/
DynamicCasts.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- DynamicCasts.cpp - Utilities for dynamic casts -------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Module.h"
#include "swift/AST/Types.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/DynamicCasts.h"
#include "swift/SIL/TypeLowering.h"
using namespace swift;
using namespace Lowering;
static unsigned getAnyMetatypeDepth(CanType type) {
unsigned depth = 0;
while (auto metatype = dyn_cast<AnyMetatypeType>(type)) {
type = metatype.getInstanceType();
depth++;
}
return depth;
}
static bool
mayBridgeToObjectiveC(ModuleDecl *M, CanType T) {
// FIXME: Disable when we don't support Objective-C interoperability?
return true;
}
static bool
mustBridgeToSwiftValueBox(ModuleDecl *M, CanType T) {
// If the target type is either an unknown dynamic type, or statically
// known to bridge, the cast may succeed.
if (T->hasArchetype())
return false;
if (T->isAnyExistentialType())
return false;
// getBridgedToObjC() might return a null-type for some types
// whose bridging implementation is allowed to live elsewhere. Exclude this
// case here.
if (auto N = T->getAnyNominal())
if (M->getASTContext().isTypeBridgedInExternalModule(N))
return false;
return !M->getASTContext().getBridgedToObjC(M, T);
}
static bool canClassOrSuperclassesHaveExtensions(ClassDecl *CD,
bool isWholeModuleOpts) {
while (CD) {
// Open classes can always be extended
if (CD->getEffectiveAccess() == AccessLevel::Open)
return true;
// Internal and public classes can be extended, if we are not in
// whole-module-optimization mode.
if (CD->getEffectiveAccess() >= AccessLevel::Internal &&
!isWholeModuleOpts)
return true;
if (!CD->hasSuperclass())
break;
CD = CD->getSuperclassDecl();
}
return false;
}
/// Try to classify a conversion from non-existential type
/// into an existential type by performing a static check
/// of protocol conformances if it is possible.
static DynamicCastFeasibility
classifyDynamicCastToProtocol(ModuleDecl *M, CanType source, CanType target,
bool isWholeModuleOpts) {
assert(target.isExistentialType() &&
"target should be an existential type");
if (source == target)
return DynamicCastFeasibility::WillSucceed;
auto *TargetProtocol = cast_or_null<ProtocolDecl>(target.getAnyNominal());
if (!TargetProtocol)
return DynamicCastFeasibility::MaySucceed;
auto conformance = M->lookupConformance(source, TargetProtocol);
if (conformance) {
// A conditional conformance can have things that need to be evaluated
// dynamically.
if (conformance->getConditionalRequirements().empty())
return DynamicCastFeasibility::WillSucceed;
return DynamicCastFeasibility::MaySucceed;
}
auto *SourceNominalTy = source.getAnyNominal();
if (!SourceNominalTy)
return DynamicCastFeasibility::MaySucceed;
// If we are casting a protocol, then the cast will fail
// as we have not found any conformances and protocols cannot
// be extended currently.
// NOTE: If we allow protocol extensions in the future, this
// conditional statement should be removed.
if (isa<ProtocolType>(source)) {
return DynamicCastFeasibility::WillFail;
}
// If it is a class and it can be proven that this class and its
// superclasses cannot be extended, then it is safe to proceed.
// No need to check this for structs, as they do not have any
// superclasses.
if (auto *CD = source.getClassOrBoundGenericClass()) {
if (canClassOrSuperclassesHaveExtensions(CD, isWholeModuleOpts))
return DynamicCastFeasibility::MaySucceed;
// Derived types may conform to the protocol.
if (!CD->isFinal()) {
// TODO: If it is a private type or internal type and we
// can prove that there are no derived types conforming to a
// protocol, then we can still return WillFail.
return DynamicCastFeasibility::MaySucceed;
}
}
// If the source type is file-private or target protocol is file-private,
// then conformances cannot be changed at run-time, because only this
// file could have implemented them, but no conformances were found.
// Therefore it is safe to make a negative decision at compile-time.
if (SourceNominalTy->getEffectiveAccess() <= AccessLevel::FilePrivate ||
TargetProtocol->getEffectiveAccess() <= AccessLevel::FilePrivate) {
// This cast is always false. Replace it with a branch to the
// failure block.
return DynamicCastFeasibility::WillFail;
}
// AnyHashable is a special case: although it's a struct, there maybe another
// type conforming to it and to the TargetProtocol at the same time.
if (SourceNominalTy == SourceNominalTy->getASTContext().getAnyHashableDecl())
return DynamicCastFeasibility::MaySucceed;
// If we are in a whole-module compilation and
// if the source type is internal or target protocol is internal,
// then conformances cannot be changed at run-time, because only this
// module could have implemented them, but no conformances were found.
// Therefore it is safe to make a negative decision at compile-time.
if (isWholeModuleOpts &&
(SourceNominalTy->getEffectiveAccess() <= AccessLevel::Internal ||
TargetProtocol->getEffectiveAccess() <= AccessLevel::Internal)) {
return DynamicCastFeasibility::WillFail;
}
return DynamicCastFeasibility::MaySucceed;
}
static DynamicCastFeasibility
classifyDynamicCastFromProtocol(ModuleDecl *M, CanType source, CanType target,
bool isWholeModuleOpts) {
assert(source.isExistentialType() &&
"source should be an existential type");
if (source == target)
return DynamicCastFeasibility::WillSucceed;
// Casts from class existential into a non-class can never succeed.
if (source->isClassExistentialType() &&
!target.isAnyExistentialType() &&
!target.getClassOrBoundGenericClass() &&
!isa<ArchetypeType>(target) &&
!mayBridgeToObjectiveC(M, target)) {
assert((target.getEnumOrBoundGenericEnum() ||
target.getStructOrBoundGenericStruct() ||
isa<TupleType>(target) ||
isa<SILFunctionType>(target) ||
isa<FunctionType>(target) ||
isa<MetatypeType>(target)) &&
"Target should be an enum, struct, tuple, metatype or function type");
return DynamicCastFeasibility::WillFail;
}
// TODO: maybe prove that certain conformances are impossible?
return DynamicCastFeasibility::MaySucceed;
}
/// Returns the existential type associated with the Hashable
/// protocol, if it can be found.
static CanType getHashableExistentialType(ModuleDecl *M) {
auto hashable =
M->getASTContext().getProtocol(KnownProtocolKind::Hashable);
if (!hashable) return CanType();
return hashable->getDeclaredType()->getCanonicalType();
}
/// Check if a given type conforms to _BridgedToObjectiveC protocol.
bool swift::isObjectiveCBridgeable(ModuleDecl *M, CanType Ty) {
// Retrieve the _BridgedToObjectiveC protocol.
auto bridgedProto =
M->getASTContext().getProtocol(KnownProtocolKind::ObjectiveCBridgeable);
if (bridgedProto) {
// Find the conformance of the value type to _BridgedToObjectiveC.
// Check whether the type conforms to _BridgedToObjectiveC.
auto conformance = M->lookupConformance(Ty, bridgedProto);
return conformance.hasValue();
}
return false;
}
/// Check if a given type conforms to _Error protocol.
bool swift::isError(ModuleDecl *M, CanType Ty) {
// Retrieve the Error protocol.
auto errorTypeProto =
M->getASTContext().getProtocol(KnownProtocolKind::Error);
if (errorTypeProto) {
// Find the conformance of the value type to Error.
// Check whether the type conforms to Error.
auto conformance = M->lookupConformance(Ty, errorTypeProto);
return conformance.hasValue();
}
return false;
}
/// Given that a type is not statically known to be an optional type, check
/// whether it might dynamically be able to store an optional.
static bool canDynamicallyStoreOptional(CanType type) {
assert(!type.getOptionalObjectType());
return type->canDynamicallyBeOptionalType(/* includeExistential */ true);
}
/// Given two class types, check whether there's a hierarchy relationship
/// between them.
static DynamicCastFeasibility
classifyClassHierarchyCast(CanType source, CanType target) {
// Upcast: if the target type statically matches a type in the
// source type's hierarchy, this is a static upcast and the cast
// will always succeed.
if (target->isExactSuperclassOf(source))
return DynamicCastFeasibility::WillSucceed;
// Upcast: if the target type might dynamically match a type in the
// source type's hierarchy, this might be an upcast, in which
// case the cast might succeed.
if (target->isBindableToSuperclassOf(source))
return DynamicCastFeasibility::MaySucceed;
// Downcast: if the source type might dynamically match a type in the
// target type's hierarchy, this might be a downcast, in which case
// the cast might succeed. Note that this also covers the case where
// the source type statically matches a type in the target type's
// hierarchy; since it's a downcast, the cast still at best might succeed.
if (source->isBindableToSuperclassOf(target))
return DynamicCastFeasibility::MaySucceed;
// Otherwise, the classes are unrelated and the cast will fail (at least
// on these grounds).
return DynamicCastFeasibility::WillFail;
}
CanType swift::getNSBridgedClassOfCFClass(ModuleDecl *M, CanType type) {
if (auto classDecl = type->getClassOrBoundGenericClass()) {
if (classDecl->getForeignClassKind() == ClassDecl::ForeignKind::CFType) {
if (auto bridgedAttr =
classDecl->getAttrs().getAttribute<ObjCBridgedAttr>()) {
auto bridgedClass = bridgedAttr->getObjCClass();
// TODO: this should handle generic classes properly.
if (!bridgedClass->isGenericContext()) {
return bridgedClass->getDeclaredInterfaceType()->getCanonicalType();
}
}
}
}
return CanType();
}
static bool isCFBridgingConversion(ModuleDecl *M, SILType sourceType,
SILType targetType) {
return (sourceType.getASTType() ==
getNSBridgedClassOfCFClass(M, targetType.getASTType()) ||
targetType.getASTType() ==
getNSBridgedClassOfCFClass(M, sourceType.getASTType()));
}
/// Try to classify the dynamic-cast relationship between two types.
DynamicCastFeasibility
swift::classifyDynamicCast(ModuleDecl *M,
CanType source,
CanType target,
bool isSourceTypeExact,
bool isWholeModuleOpts) {
if (source == target) return DynamicCastFeasibility::WillSucceed;
auto sourceObject = source.getOptionalObjectType();
auto targetObject = target.getOptionalObjectType();
// A common level of optionality doesn't affect the feasibility,
// except that we can't fold things to failure because nil inhabits
// both types.
if (sourceObject && targetObject) {
return atWorst(classifyDynamicCast(M, sourceObject, targetObject),
DynamicCastFeasibility::MaySucceed);
// Casting to a more optional type follows the same rule unless we
// know that the source cannot dynamically be an optional value,
// in which case we'll always just cast and inject into an optional.
} else if (targetObject) {
auto result = classifyDynamicCast(M, source, targetObject,
/* isSourceTypeExact */ false,
isWholeModuleOpts);
if (canDynamicallyStoreOptional(source))
result = atWorst(result, DynamicCastFeasibility::MaySucceed);
return result;
// Casting to a less-optional type can always fail.
} else if (sourceObject) {
auto result = atBest(classifyDynamicCast(M, sourceObject, target,
/* isSourceTypeExact */ false,
isWholeModuleOpts),
DynamicCastFeasibility::MaySucceed);
if (target.isExistentialType()) {
result = atWorst(result, classifyDynamicCastToProtocol(
M, source, target, isWholeModuleOpts));
}
return result;
}
assert(!sourceObject && !targetObject);
// Assume that casts to or from existential types or involving
// dependent types can always succeed. This is over-conservative.
if (source->hasArchetype() || source.isExistentialType() ||
target->hasArchetype() || target.isExistentialType()) {
// Check conversions from non-protocol types into protocol types.
if (!source.isExistentialType() &&
target.isExistentialType())
return classifyDynamicCastToProtocol(M, source, target,
isWholeModuleOpts);
// Check conversions from protocol types to non-protocol types.
if (source.isExistentialType() &&
!target.isExistentialType())
return classifyDynamicCastFromProtocol(M, source, target,
isWholeModuleOpts);
return DynamicCastFeasibility::MaySucceed;
}
// Casts from AnyHashable.
if (auto sourceStruct = dyn_cast<StructType>(source)) {
if (sourceStruct->getDecl() == M->getASTContext().getAnyHashableDecl()) {
if (auto hashable = getHashableExistentialType(M)) {
// Succeeds if Hashable can be cast to the target type.
return classifyDynamicCastFromProtocol(M, hashable, target,
isWholeModuleOpts);
}
}
}
// Casts to AnyHashable.
if (auto targetStruct = dyn_cast<StructType>(target)) {
if (targetStruct->getDecl() == M->getASTContext().getAnyHashableDecl()) {
// Succeeds if the source type can be dynamically cast to Hashable.
// Hashable is not actually a legal existential type right now, but
// the check doesn't care about that.
if (auto hashable = getHashableExistentialType(M)) {
return classifyDynamicCastToProtocol(M, source, hashable,
isWholeModuleOpts);
}
}
}
// Metatype casts.
if (auto sourceMetatype = dyn_cast<AnyMetatypeType>(source)) {
auto targetMetatype = dyn_cast<AnyMetatypeType>(target);
if (!targetMetatype) return DynamicCastFeasibility::WillFail;
source = sourceMetatype.getInstanceType();
target = targetMetatype.getInstanceType();
if (source == target &&
targetMetatype.isAnyExistentialType() ==
sourceMetatype.isAnyExistentialType())
return DynamicCastFeasibility::WillSucceed;
// If the source and target are the same existential type, but the source is
// P.Protocol and the dest is P.Type, then we need to consider whether the
// protocol is self-conforming.
// The only cases where a protocol self-conforms are objc protocols, but
// we're going to expect P.Type to hold a class object. And this case
// doesn't matter since for a self-conforming protocol type there can't be
// any type-level methods.
// Thus we consider this kind of cast to always fail. The only exception
// from this rule is when the target is Any.Type, because *.Protocol
// can always be casted to Any.Type.
if (source->isAnyExistentialType() && isa<MetatypeType>(sourceMetatype) &&
isa<ExistentialMetatypeType>(targetMetatype)) {
return target->isAny() ? DynamicCastFeasibility::WillSucceed
: DynamicCastFeasibility::WillFail;
}
if (targetMetatype.isAnyExistentialType() &&
(isa<ProtocolType>(target) || isa<ProtocolCompositionType>(target))) {
auto Feasibility =
classifyDynamicCastToProtocol(M, source, target, isWholeModuleOpts);
// Cast from existential metatype to existential metatype may still
// succeed, even if we cannot prove anything statically.
if (Feasibility != DynamicCastFeasibility::WillFail ||
!sourceMetatype.isAnyExistentialType())
return Feasibility;
}
// If isSourceTypeExact is true, we know we are casting the result of a
// MetatypeInst instruction.
if (isSourceTypeExact) {
// If source or target are existentials, then it can be cast
// successfully only into itself.
if ((target.isAnyExistentialType() || source.isAnyExistentialType()) &&
target != source)
return DynamicCastFeasibility::WillFail;
}
// Casts from class existential metatype into a concrete non-class metatype
// can never succeed.
if (source->isClassExistentialType() &&
!target.isAnyExistentialType() &&
!target.getClassOrBoundGenericClass())
return DynamicCastFeasibility::WillFail;
// TODO: prove that some conversions to existential metatype will
// obviously succeed/fail.
// TODO: prove that some conversions from class existential metatype
// to a concrete non-class metatype will obviously fail.
// TODO: class metatype to/from AnyObject
// TODO: protocol concrete metatype to/from ObjCProtocol
if (isa<ExistentialMetatypeType>(sourceMetatype) ||
isa<ExistentialMetatypeType>(targetMetatype))
return (getAnyMetatypeDepth(source) == getAnyMetatypeDepth(target)
? DynamicCastFeasibility::MaySucceed
: DynamicCastFeasibility::WillFail);
// If both metatypes are class metatypes, check if classes can be
// cast.
if (source.getClassOrBoundGenericClass() &&
target.getClassOrBoundGenericClass())
return classifyClassHierarchyCast(source, target);
// Different structs cannot be cast to each other.
if (source.getStructOrBoundGenericStruct() &&
target.getStructOrBoundGenericStruct() &&
source != target)
return DynamicCastFeasibility::WillFail;
// Different enums cannot be cast to each other.
if (source.getEnumOrBoundGenericEnum() &&
target.getEnumOrBoundGenericEnum() &&
source != target)
return DynamicCastFeasibility::WillFail;
// If we don't know any better, assume that the cast may succeed.
return DynamicCastFeasibility::MaySucceed;
}
// Function casts.
if (auto sourceFunction = dyn_cast<FunctionType>(source)) {
if (auto targetFunction = dyn_cast<FunctionType>(target)) {
// A function cast can succeed if the function types can be identical,
// or if the target type is throwier than the original.
// A non-throwing source function can be cast to a throwing target type,
// but not vice versa.
if (sourceFunction->throws() && !targetFunction->throws())
return DynamicCastFeasibility::WillFail;
// The cast can't change the representation at runtime.
if (targetFunction->getRepresentation()
!= sourceFunction->getRepresentation())
return DynamicCastFeasibility::WillFail;
if (AnyFunctionType::equalParams(sourceFunction.getParams(),
targetFunction.getParams()) &&
sourceFunction.getResult() == targetFunction.getResult())
return DynamicCastFeasibility::WillSucceed;
return DynamicCastFeasibility::WillFail;
}
}
// Tuple casts.
if (auto sourceTuple = dyn_cast<TupleType>(source)) {
if (auto targetTuple = dyn_cast<TupleType>(target)) {
// # of elements must coincide.
if (sourceTuple->getNumElements() != targetTuple->getNumElements())
return DynamicCastFeasibility::WillFail;
DynamicCastFeasibility result = DynamicCastFeasibility::WillSucceed;
for (unsigned i : range(sourceTuple->getNumElements())) {
const auto &sourceElt = sourceTuple->getElement(i);
const auto &targetElt = targetTuple->getElement(i);
// If both have names and the names mismatch, the cast will fail.
if (sourceElt.hasName() && targetElt.hasName() &&
sourceElt.getName() != targetElt.getName())
return DynamicCastFeasibility::WillFail;
// Combine the result of prior elements with this element type.
result = std::max(result,
classifyDynamicCast(M,
sourceElt.getType()->getCanonicalType(),
targetElt.getType()->getCanonicalType(),
isSourceTypeExact,
isWholeModuleOpts));
// If this element failed, we're done.
if (result == DynamicCastFeasibility::WillFail)
break;
}
return result;
}
}
// Class casts.
auto sourceClass = source.getClassOrBoundGenericClass();
auto targetClass = target.getClassOrBoundGenericClass();
if (sourceClass) {
if (targetClass) {
// Imported Objective-C generics don't check the generic parameters, which
// are lost at runtime.
if (sourceClass->usesObjCGenericsModel()) {
if (sourceClass == targetClass)
return DynamicCastFeasibility::WillSucceed;
if (targetClass->usesObjCGenericsModel()) {
// If both classes are ObjC generics, the cast may succeed if the
// classes are related, irrespective of their generic parameters.
auto isDeclSuperclass = [&](ClassDecl *proposedSuper,
ClassDecl *proposedSub) -> bool {
do {
if (proposedSuper == proposedSub)
return true;
} while ((proposedSub = proposedSub->getSuperclassDecl()));
return false;
};
if (isDeclSuperclass(sourceClass, targetClass))
return DynamicCastFeasibility::MaySucceed;
if (isDeclSuperclass(targetClass, sourceClass)) {
return DynamicCastFeasibility::WillSucceed;
}
return DynamicCastFeasibility::WillFail;
}
}
// Try a hierarchy cast. If that isn't failure, we can report it.
auto hierarchyResult = classifyClassHierarchyCast(source, target);
if (hierarchyResult != DynamicCastFeasibility::WillFail)
return hierarchyResult;
// As a backup, consider whether either type is a CF class type
// with an NS bridged equivalent.
CanType bridgedSource = getNSBridgedClassOfCFClass(M, source);
CanType bridgedTarget = getNSBridgedClassOfCFClass(M, target);
// If neither type qualifies, we're done.
if (!bridgedSource && !bridgedTarget)
return DynamicCastFeasibility::WillFail;
// Otherwise, map over to the bridged types and try to answer the
// question there.
if (bridgedSource) source = bridgedSource;
if (bridgedTarget) target = bridgedTarget;
return classifyDynamicCast(M, source, target, false, isWholeModuleOpts);
}
// Casts from a class into a non-class can never succeed if the target must
// be bridged to a SwiftValueBox. You would need an AnyObject source for
// that.
if (!target.isAnyExistentialType() &&
!target.getClassOrBoundGenericClass() &&
!isa<ArchetypeType>(target) &&
mustBridgeToSwiftValueBox(M, target)) {
assert((target.getEnumOrBoundGenericEnum() ||
target.getStructOrBoundGenericStruct() ||
isa<TupleType>(target) ||
isa<SILFunctionType>(target) ||
isa<FunctionType>(target) ||
isa<MetatypeType>(target)) &&
"Target should be an enum, struct, tuple, metatype or function type");
return DynamicCastFeasibility::WillFail;
}
// In the Objective-C runtime, class metatypes are also class instances.
// The cast may succeed if the target type can be inhabited by a class
// metatype.
// TODO: Narrow this to the sourceClass being exactly NSObject.
if (M->getASTContext().LangOpts.EnableObjCInterop) {
if (auto targetMeta = dyn_cast<MetatypeType>(target)) {
if (isa<ArchetypeType>(targetMeta.getInstanceType())
|| targetMeta.getInstanceType()->mayHaveSuperclass())
return DynamicCastFeasibility::MaySucceed;
} else if (isa<ExistentialMetatypeType>(target)) {
return DynamicCastFeasibility::MaySucceed;
}
}
}
// If the source is not existential, an archetype, or (under the ObjC runtime)
// a class, and the destination is a metatype, there is no way the cast can
// succeed.
if (target->is<AnyMetatypeType>()) return DynamicCastFeasibility::WillFail;
// FIXME: Be more careful with bridging conversions from
// NSArray, NSDictionary and NSSet as they may fail?
// We know that a cast from Int -> class foobar will fail.
if (targetClass &&
!source.isAnyExistentialType() &&
!source.getClassOrBoundGenericClass() &&
!isa<ArchetypeType>(source) &&
mustBridgeToSwiftValueBox(M, source)) {
assert((source.getEnumOrBoundGenericEnum() ||
source.getStructOrBoundGenericStruct() ||
isa<TupleType>(source) ||
isa<SILFunctionType>(source) ||
isa<FunctionType>(source) ||
isa<MetatypeType>(source)) &&
"Source should be an enum, struct, tuple, metatype or function type");
return DynamicCastFeasibility::WillFail;
}
// Check if there might be a bridging conversion.
if (source->isBridgeableObjectType() && mayBridgeToObjectiveC(M, target)) {
// Try to get the ObjC type which is bridged to target type.
assert(!target.isAnyExistentialType());
// ObjC-to-Swift casts may fail. And in most cases it is impossible to
// statically predict the outcome. So, let's be conservative here.
return DynamicCastFeasibility::MaySucceed;
}
if (target->isBridgeableObjectType() && mayBridgeToObjectiveC(M, source)) {
// Try to get the ObjC type which is bridged to source type.
assert(!source.isAnyExistentialType());
if (Type ObjCTy = M->getASTContext().getBridgedToObjC(M, source)) {
// If the bridged ObjC type is known, check if
// this type can be cast into target type.
return classifyDynamicCast(M,
ObjCTy->getCanonicalType(),
target,
/* isSourceTypeExact */ false, isWholeModuleOpts);
}
return DynamicCastFeasibility::MaySucceed;
}
// Check if it is a cast between bridged error types.
if (isError(M, source) && isError(M, target)) {
// TODO: Cast to NSError succeeds always.
return DynamicCastFeasibility::MaySucceed;
}
// Check for a viable collection cast.
if (auto sourceStruct = dyn_cast<BoundGenericStructType>(source)) {
if (auto targetStruct = dyn_cast<BoundGenericStructType>(target)) {
// Both types have to be the same kind of collection.
auto typeDecl = sourceStruct->getDecl();
if (typeDecl == targetStruct->getDecl()) {
auto sourceArgs = sourceStruct.getGenericArgs();
auto targetArgs = targetStruct.getGenericArgs();
// Note that we can never say that a collection cast is impossible:
// a cast can always succeed on an empty collection.
// Arrays and sets.
if (typeDecl == M->getASTContext().getArrayDecl() ||
typeDecl == M->getASTContext().getSetDecl()) {
auto valueFeasibility =
classifyDynamicCast(M, sourceArgs[0], targetArgs[0]);
return atWorst(valueFeasibility,
DynamicCastFeasibility::MaySucceed);
// Dictionaries.
} else if (typeDecl == M->getASTContext().getDictionaryDecl()) {
auto keyFeasibility =
classifyDynamicCast(M, sourceArgs[0], targetArgs[0]);
auto valueFeasibility =
classifyDynamicCast(M, sourceArgs[1], targetArgs[1]);
return atWorst(atBest(keyFeasibility, valueFeasibility),
DynamicCastFeasibility::MaySucceed);
}
}
}
}
return DynamicCastFeasibility::WillFail;
}
static unsigned getOptionalDepth(CanType type) {
unsigned depth = 0;
while (CanType objectType = type.getOptionalObjectType()) {
depth++;
type = objectType;
}
return depth;
}
namespace {
struct Source {
SILValue Value;
CanType FormalType;
bool isAddress() const { return Value->getType().isAddress(); }
SILType getSILType() const { return Value->getType(); }
Source() = default;
Source(SILValue value, CanType formalType)
: Value(value), FormalType(formalType) {}
};
struct Target {
SILValue Address;
SILType LoweredType;
CanType FormalType;
bool isAddress() const { return (bool) Address; }
Source asAddressSource() const {
assert(isAddress());
return { Address, FormalType };
}
Source asScalarSource(SILValue value) const {
assert(!isAddress());
assert(!value->getType().isAddress());
return { value, FormalType };
}
SILType getSILType() const {
if (isAddress())
return Address->getType();
else
return LoweredType;
}
Target() = default;
Target(SILValue address, CanType formalType)
: Address(address), LoweredType(address->getType()),
FormalType(formalType) {
assert(LoweredType.isAddress());
}
Target(SILType loweredType, CanType formalType)
: Address(), LoweredType(loweredType), FormalType(formalType) {
assert(!loweredType.isAddress());
}
};
class CastEmitter {
SILBuilder &B;
SILModule &M;
ASTContext &Ctx;
SILLocation Loc;
ModuleDecl *SwiftModule;
public:
CastEmitter(SILBuilder &B, ModuleDecl *swiftModule, SILLocation loc)
: B(B), M(B.getModule()), Ctx(M.getASTContext()), Loc(loc),
SwiftModule(swiftModule) {}
Source emitTopLevel(Source source, Target target) {
unsigned sourceOptDepth = getOptionalDepth(source.FormalType);
unsigned targetOptDepth = getOptionalDepth(target.FormalType);
assert(sourceOptDepth <= targetOptDepth);
return emitAndInjectIntoOptionals(source, target,
targetOptDepth - sourceOptDepth);
}
private:
const TypeLowering &getTypeLowering(SILType type) {
return M.Types.getTypeLowering(type);
}
SILValue getOwnedScalar(Source source, const TypeLowering &srcTL) {
assert(!source.isAddress());
return source.Value;
}
Source putOwnedScalar(SILValue scalar, Target target) {
assert(scalar->getType() == target.LoweredType.getObjectType());
if (!target.isAddress())
return target.asScalarSource(scalar);
auto &targetTL = getTypeLowering(target.LoweredType);
targetTL.emitStoreOfCopy(B, Loc, scalar, target.Address,
IsInitialization);
return target.asAddressSource();
}
Source emitSameType(Source source, Target target) {
assert(source.FormalType == target.FormalType ||
source.getSILType() == target.getSILType());
auto &srcTL = getTypeLowering(source.Value->getType());
// The destination always wants a +1 value, so make the source
// +1 if it's a scalar.
if (!source.isAddress()) {
source.Value = getOwnedScalar(source, srcTL);
}
// If we've got a scalar and want a scalar, the source is
// exactly right.
if (!target.isAddress() && !source.isAddress())
return source;
// If the destination wants a non-address value, load
if (!target.isAddress()) {
SILValue value = srcTL.emitLoadOfCopy(B, Loc, source.Value, IsTake);
return target.asScalarSource(value);
}
if (source.isAddress()) {
srcTL.emitCopyInto(B, Loc, source.Value, target.Address,
IsTake, IsInitialization);
} else {
srcTL.emitStoreOfCopy(B, Loc, source.Value, target.Address,
IsInitialization);
}
return target.asAddressSource();
}
Source emit(Source source, Target target) {
if (source.FormalType == target.FormalType ||
source.getSILType() == target.getSILType())
return emitSameType(source, target);
// Handle subtype conversions involving optionals.
if (auto sourceObjectType = source.FormalType.getOptionalObjectType()) {
return emitOptionalToOptional(source, sourceObjectType, target);
}
assert(!target.FormalType.getOptionalObjectType());
// The only other things we return WillSucceed for currently is
// an upcast or CF/NS toll-free-bridging conversion.
// FIXME: Upcasts between existential metatypes are not handled yet.
// We should generate for it:
// %openedSrcMetatype = open_existential srcMetatype
// init_existential dstMetatype, %openedSrcMetatype
auto &srcTL = getTypeLowering(source.Value->getType());
SILValue value;
if (source.isAddress()) {
value = srcTL.emitLoadOfCopy(B, Loc, source.Value, IsTake);
} else {
value = getOwnedScalar(source, srcTL);
}
auto targetTy = target.LoweredType;
if (isCFBridgingConversion(SwiftModule, targetTy, value->getType())) {
value = B.createUncheckedRefCast(Loc, value, targetTy.getObjectType());
} else {
value = B.createUpcast(Loc, value, targetTy.getObjectType());
}
return putOwnedScalar(value, target);
}
Source emitAndInjectIntoOptionals(Source source, Target target,
unsigned depth) {
if (depth == 0)
return emit(source, target);
// Recurse.
EmitSomeState state;
Target objectTarget = prepareForEmitSome(target, state);
Source objectSource =
emitAndInjectIntoOptionals(source, objectTarget, depth - 1);
return emitSome(objectSource, target, state);
}
Source emitOptionalToOptional(Source source,
CanType sourceObjectType,
Target target) {
// Switch on the incoming value.
SILBasicBlock *contBB = B.splitBlockForFallthrough();
SILBasicBlock *noneBB = B.splitBlockForFallthrough();
SILBasicBlock *someBB = B.splitBlockForFallthrough();
// Emit the switch.
std::pair<EnumElementDecl*, SILBasicBlock*> cases[] = {
{ Ctx.getOptionalSomeDecl(), someBB },
{ Ctx.getOptionalNoneDecl(), noneBB },
};
if (source.isAddress()) {
B.createSwitchEnumAddr(Loc, source.Value, /*default*/ nullptr, cases);
} else {
B.createSwitchEnum(Loc, source.Value, /*default*/ nullptr, cases);
}
// Create the Some block, which recurses.
B.setInsertionPoint(someBB);
{
auto sourceSomeDecl = Ctx.getOptionalSomeDecl();
SILType loweredSourceObjectType =
source.Value->getType().getEnumElementType(sourceSomeDecl, M);
// Form the target for the optional object.
EmitSomeState state;
Target objectTarget = prepareForEmitSome(target, state);
// Form the source value.
AllocStackInst *sourceTemp = nullptr;
Source objectSource;
if (source.isAddress()) {
// TODO: add an instruction for non-destructively getting a
// specific element's data.
SILValue sourceAddr = source.Value;
sourceAddr = B.createUncheckedTakeEnumDataAddr(Loc, sourceAddr,
sourceSomeDecl, loweredSourceObjectType);
objectSource = Source(sourceAddr, sourceObjectType);
} else {
// switch enum always start as @owned.
SILValue sourceObjectValue = someBB->createPHIArgument(
loweredSourceObjectType, ValueOwnershipKind::Owned);
objectSource = Source(sourceObjectValue, sourceObjectType);
}
Source resultObject = emit(objectSource, objectTarget);
// Deallocate the source temporary if we needed one.
if (sourceTemp) {
B.createDeallocStack(Loc, sourceTemp);
}
Source result = emitSome(resultObject, target, state);
assert(result.isAddress() == target.isAddress());
if (target.isAddress()) {
B.createBranch(Loc, contBB);
} else {
B.createBranch(Loc, contBB, { result.Value });
}
}
// Create the None block.
B.setInsertionPoint(noneBB);
{
Source result = emitNone(target);
assert(result.isAddress() == target.isAddress());
if (target.isAddress()) {
B.createBranch(Loc, contBB);
} else {
B.createBranch(Loc, contBB, { result.Value });
}
}
// Continuation block.
B.setInsertionPoint(contBB);
if (target.isAddress()) {
return target.asAddressSource();
} else {
SILValue result = contBB->createPHIArgument(target.LoweredType,
ValueOwnershipKind::Owned);
return target.asScalarSource(result);
}
}
struct EmitSomeState {
EnumElementDecl *SomeDecl;
};
Target prepareForEmitSome(Target target, EmitSomeState &state) {
auto objectType = target.FormalType.getOptionalObjectType();
assert(objectType && "emitting Some into non-optional type");
auto someDecl = Ctx.getOptionalSomeDecl();
state.SomeDecl = someDecl;
SILType loweredObjectType =
target.LoweredType.getEnumElementType(someDecl, M);
if (target.isAddress()) {
SILValue objectAddr =
B.createInitEnumDataAddr(Loc, target.Address, someDecl,
loweredObjectType);
return { objectAddr, objectType };
} else {
return { loweredObjectType, objectType };
}
}
Source emitSome(Source source, Target target, EmitSomeState &state) {
// If our target is an address, prepareForEmitSome should have set this