forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInstructionUtils.cpp
587 lines (509 loc) · 18.2 KB
/
InstructionUtils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
//===--- InstructionUtils.cpp - Utilities for SIL instructions ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-inst-utils"
#include "swift/SIL/InstructionUtils.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/Basic/NullablePtr.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILVisitor.h"
using namespace swift;
/// Strip off casts/indexing insts/address projections from V until there is
/// nothing left to strip.
/// FIXME: Why don't we strip projections after stripping indexes?
SILValue swift::getUnderlyingObject(SILValue V) {
while (true) {
SILValue V2 = stripIndexingInsts(stripAddressProjections(stripCasts(V)));
if (V2 == V)
return V2;
V = V2;
}
}
/// Strip off casts and address projections into the interior of a value. Unlike
/// getUnderlyingObject, this does not find the root of a heap object--a class
/// property is itself an address root.
SILValue swift::getUnderlyingAddressRoot(SILValue V) {
while (true) {
SILValue V2 = stripIndexingInsts(stripCasts(V));
switch (V2->getKind()) {
case ValueKind::StructElementAddrInst:
case ValueKind::TupleElementAddrInst:
case ValueKind::UncheckedTakeEnumDataAddrInst:
V2 = cast<SingleValueInstruction>(V2)->getOperand(0);
break;
default:
break;
}
if (V2 == V)
return V2;
V = V2;
}
}
SILValue swift::getUnderlyingObjectStopAtMarkDependence(SILValue V) {
while (true) {
SILValue V2 = stripIndexingInsts(stripAddressProjections(stripCastsWithoutMarkDependence(V)));
if (V2 == V)
return V2;
V = V2;
}
}
static bool isRCIdentityPreservingCast(ValueKind Kind) {
switch (Kind) {
case ValueKind::UpcastInst:
case ValueKind::UncheckedRefCastInst:
case ValueKind::UnconditionalCheckedCastInst:
case ValueKind::UnconditionalCheckedCastValueInst:
case ValueKind::RefToBridgeObjectInst:
case ValueKind::BridgeObjectToRefInst:
return true;
default:
return false;
}
}
/// Return the underlying SILValue after stripping off identity SILArguments if
/// we belong to a BB with one predecessor.
SILValue swift::stripSinglePredecessorArgs(SILValue V) {
while (true) {
auto *A = dyn_cast<SILArgument>(V);
if (!A)
return V;
SILBasicBlock *BB = A->getParent();
// First try and grab the single predecessor of our parent BB. If we don't
// have one, bail.
SILBasicBlock *Pred = BB->getSinglePredecessorBlock();
if (!Pred)
return V;
// Then grab the terminator of Pred...
TermInst *PredTI = Pred->getTerminator();
// And attempt to find our matching argument.
//
// *NOTE* We can only strip things here if we know that there is no semantic
// change in terms of upcasts/downcasts/enum extraction since this is used
// by other routines here. This means that we can only look through
// cond_br/br.
//
// For instance, routines that use stripUpcasts() do not want to strip off a
// downcast that results from checked_cast_br.
if (auto *BI = dyn_cast<BranchInst>(PredTI)) {
V = BI->getArg(A->getIndex());
continue;
}
if (auto *CBI = dyn_cast<CondBranchInst>(PredTI)) {
if (SILValue Arg = CBI->getArgForDestBB(BB, A)) {
V = Arg;
continue;
}
}
return V;
}
}
SILValue swift::stripCastsWithoutMarkDependence(SILValue V) {
while (true) {
V = stripSinglePredecessorArgs(V);
auto K = V->getKind();
if (isRCIdentityPreservingCast(K) ||
K == ValueKind::UncheckedTrivialBitCastInst) {
V = cast<SingleValueInstruction>(V)->getOperand(0);
continue;
}
return V;
}
}
SILValue swift::stripCasts(SILValue V) {
while (true) {
V = stripSinglePredecessorArgs(V);
auto K = V->getKind();
if (isRCIdentityPreservingCast(K)
|| K == ValueKind::UncheckedTrivialBitCastInst
|| K == ValueKind::MarkDependenceInst) {
V = cast<SingleValueInstruction>(V)->getOperand(0);
continue;
}
return V;
}
}
SILValue swift::stripUpCasts(SILValue V) {
assert(V->getType().isClassOrClassMetatype() &&
"Expected class or class metatype!");
V = stripSinglePredecessorArgs(V);
while (auto upcast = dyn_cast<UpcastInst>(V))
V = stripSinglePredecessorArgs(upcast->getOperand());
return V;
}
SILValue swift::stripClassCasts(SILValue V) {
while (true) {
if (auto *UI = dyn_cast<UpcastInst>(V)) {
V = UI->getOperand();
continue;
}
if (auto *UCCI = dyn_cast<UnconditionalCheckedCastInst>(V)) {
V = UCCI->getOperand();
continue;
}
return V;
}
}
SILValue swift::stripAddressAccess(SILValue V) {
while (true) {
switch (V->getKind()) {
default:
return V;
case ValueKind::BeginBorrowInst:
case ValueKind::BeginAccessInst:
V = cast<SingleValueInstruction>(V)->getOperand(0);
}
}
}
SILValue swift::stripAddressProjections(SILValue V) {
while (true) {
V = stripSinglePredecessorArgs(V);
if (!Projection::isAddressProjection(V))
return V;
V = cast<SingleValueInstruction>(V)->getOperand(0);
}
}
SILValue swift::stripUnaryAddressProjections(SILValue V) {
while (true) {
V = stripSinglePredecessorArgs(V);
if (!Projection::isAddressProjection(V))
return V;
auto *Inst = cast<SingleValueInstruction>(V);
if (Inst->getNumOperands() > 1)
return V;
V = Inst->getOperand(0);
}
}
SILValue swift::stripValueProjections(SILValue V) {
while (true) {
V = stripSinglePredecessorArgs(V);
if (!Projection::isObjectProjection(V))
return V;
V = cast<SingleValueInstruction>(V)->getOperand(0);
}
}
SILValue swift::stripIndexingInsts(SILValue V) {
while (true) {
if (!isa<IndexingInst>(V))
return V;
V = cast<IndexingInst>(V)->getBase();
}
}
SILValue swift::stripExpectIntrinsic(SILValue V) {
auto *BI = dyn_cast<BuiltinInst>(V);
if (!BI)
return V;
if (BI->getIntrinsicInfo().ID != llvm::Intrinsic::expect)
return V;
return BI->getArguments()[0];
}
SILValue swift::stripBorrow(SILValue V) {
if (auto *BBI = dyn_cast<BeginBorrowInst>(V))
return BBI->getOperand();
return V;
}
// All instructions handled here must propagate their first operand into their
// single result.
//
// This is guaranteed to handle all function-type converstions: ThinToThick,
// ConvertFunction, and ConvertEscapeToNoEscapeInst.
SingleValueInstruction *swift::getSingleValueCopyOrCast(SILInstruction *I) {
if (auto *convert = dyn_cast<ConversionInst>(I))
return convert;
switch (I->getKind()) {
default:
return nullptr;
case SILInstructionKind::CopyValueInst:
case SILInstructionKind::CopyBlockInst:
case SILInstructionKind::CopyBlockWithoutEscapingInst:
case SILInstructionKind::BeginBorrowInst:
case SILInstructionKind::BeginAccessInst:
case SILInstructionKind::MarkDependenceInst:
return cast<SingleValueInstruction>(I);
}
}
// Does this instruction terminate a SIL-level scope?
bool swift::isEndOfScopeMarker(SILInstruction *user) {
switch (user->getKind()) {
default:
return false;
case SILInstructionKind::EndAccessInst:
case SILInstructionKind::EndBorrowInst:
case SILInstructionKind::EndLifetimeInst:
return true;
}
}
bool swift::isIncidentalUse(SILInstruction *user) {
return isEndOfScopeMarker(user) || user->isDebugInstruction() ||
isa<FixLifetimeInst>(user);
}
bool swift::onlyAffectsRefCount(SILInstruction *user) {
switch (user->getKind()) {
default:
return false;
case SILInstructionKind::AutoreleaseValueInst:
case SILInstructionKind::DestroyValueInst:
case SILInstructionKind::ReleaseValueInst:
case SILInstructionKind::RetainValueInst:
case SILInstructionKind::StrongReleaseInst:
case SILInstructionKind::StrongRetainInst:
case SILInstructionKind::UnmanagedAutoreleaseValueInst:
case SILInstructionKind::UnmanagedReleaseValueInst:
case SILInstructionKind::UnmanagedRetainValueInst:
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::Name##RetainInst: \
case SILInstructionKind::Name##ReleaseInst: \
case SILInstructionKind::StrongRetain##Name##Inst:
#include "swift/AST/ReferenceStorage.def"
return true;
}
}
bool swift::isSanitizerInstrumentation(SILInstruction *Instruction) {
auto *BI = dyn_cast<BuiltinInst>(Instruction);
if (!BI)
return false;
Identifier Name = BI->getName();
if (Name == BI->getModule().getASTContext().getIdentifier("tsanInoutAccess"))
return true;
return false;
}
SILValue swift::stripConvertFunctions(SILValue V) {
while (true) {
if (auto CFI = dyn_cast<ConvertFunctionInst>(V)) {
V = CFI->getOperand();
continue;
}
else if (auto *Cvt = dyn_cast<ConvertEscapeToNoEscapeInst>(V)) {
V = Cvt->getOperand();
continue;
}
break;
}
return V;
}
SILValue swift::isPartialApplyOfReabstractionThunk(PartialApplyInst *PAI) {
if (PAI->getNumArguments() != 1)
return SILValue();
auto *Fun = PAI->getReferencedFunction();
if (!Fun)
return SILValue();
// Make sure we have a reabstraction thunk.
if (Fun->isThunk() != IsReabstractionThunk)
return SILValue();
// The argument should be a closure.
auto Arg = PAI->getArgument(0);
if (!Arg->getType().is<SILFunctionType>() ||
(!Arg->getType().isReferenceCounted(PAI->getFunction()->getModule()) &&
Arg->getType().getAs<SILFunctionType>()->getRepresentation() !=
SILFunctionType::Representation::Thick))
return SILValue();
return Arg;
}
/// Given a block used as a noescape function argument, attempt to find all
/// Swift closures that invoking the block will call. The StoredClosures may not
/// actually be partial_apply instructions. They may be copied, block arguments,
/// or conversions. The caller must continue searching up the use-def chain.
static SILValue findClosureStoredIntoBlock(SILValue V) {
auto FnType = V->getType().castTo<SILFunctionType>();
assert(FnType->getRepresentation() == SILFunctionTypeRepresentation::Block);
(void)FnType;
// Given a no escape block argument to a function,
// pattern match to find the noescape closure that invoking the block
// will call:
// %noescape_closure = ...
// %wae_Thunk = function_ref @$withoutActuallyEscapingThunk
// %sentinel =
// partial_apply [callee_guaranteed] %wae_thunk(%noescape_closure)
// %noescaped_wrapped = mark_dependence %sentinel on %noescape_closure
// %storage = alloc_stack
// %storage_address = project_block_storage %storage
// store %noescaped_wrapped to [init] %storage_address
// %block = init_block_storage_header %storage invoke %thunk
// %arg = copy_block %block
InitBlockStorageHeaderInst *IBSHI = dyn_cast<InitBlockStorageHeaderInst>(V);
if (!IBSHI)
return nullptr;
SILValue BlockStorage = IBSHI->getBlockStorage();
auto *PBSI = BlockStorage->getSingleUserOfType<ProjectBlockStorageInst>();
assert(PBSI && "Couldn't find block storage projection");
auto *SI = PBSI->getSingleUserOfType<StoreInst>();
assert(SI && "Couldn't find single store of function into block storage");
auto *CV = dyn_cast<CopyValueInst>(SI->getSrc());
if (!CV)
return nullptr;
auto *WrappedNoEscape = dyn_cast<MarkDependenceInst>(CV->getOperand());
if (!WrappedNoEscape)
return nullptr;
auto Sentinel = dyn_cast<PartialApplyInst>(WrappedNoEscape->getValue());
if (!Sentinel)
return nullptr;
auto NoEscapeClosure = isPartialApplyOfReabstractionThunk(Sentinel);
if (WrappedNoEscape->getBase() != NoEscapeClosure)
return nullptr;
// This is the value of the closure to be invoked. To find the partial_apply
// itself, the caller must search the use-def chain.
return NoEscapeClosure;
}
/// Find all closures that may be propagated into the given function-type value.
///
/// Searches the use-def chain from the given value upward until a partial_apply
/// is reached. Populates `results` with the set of partial_apply instructions.
///
/// `funcVal` may be either a function type or an Optional function type. This
/// might be called on a directly applied value or on a call argument, which may
/// in turn be applied within the callee.
void swift::findClosuresForFunctionValue(
SILValue funcVal, TinyPtrVector<PartialApplyInst *> &results) {
SILType funcTy = funcVal->getType();
// Handle `Optional<@convention(block) @noescape (_)->(_)>`
if (auto optionalObjTy = funcTy.getOptionalObjectType())
funcTy = optionalObjTy;
assert(funcTy.is<SILFunctionType>());
SmallVector<SILValue, 4> worklist;
// Avoid exponential path exploration and prevent duplicate results.
llvm::SmallDenseSet<SILValue, 8> visited;
auto worklistInsert = [&](SILValue V) {
if (visited.insert(V).second)
worklist.push_back(V);
};
worklistInsert(funcVal);
while (!worklist.empty()) {
SILValue V = worklist.pop_back_val();
if (auto *I = V->getDefiningInstruction()) {
// Look through copies, borrows, and conversions.
//
// Handle copy_block and copy_block_without_actually_escaping before
// calling findClosureStoredIntoBlock.
if (SingleValueInstruction *SVI = getSingleValueCopyOrCast(I)) {
worklistInsert(SVI->getOperand(0));
continue;
}
}
// Look through Optionals.
if (V->getType().getOptionalObjectType()) {
auto *EI = dyn_cast<EnumInst>(V);
if (EI && EI->hasOperand()) {
worklistInsert(EI->getOperand());
}
// Ignore the .None case.
continue;
}
// Look through Phis.
//
// This should be done before calling findClosureStoredIntoBlock.
if (auto *arg = dyn_cast<SILPHIArgument>(V)) {
SmallVector<std::pair<SILBasicBlock *, SILValue>, 2> blockArgs;
arg->getIncomingPhiValues(blockArgs);
for (auto &blockAndArg : blockArgs)
worklistInsert(blockAndArg.second);
continue;
}
// Look through ObjC closures.
auto fnType = V->getType().getAs<SILFunctionType>();
if (fnType
&& fnType->getRepresentation() == SILFunctionTypeRepresentation::Block) {
if (SILValue storedClosure = findClosureStoredIntoBlock(V))
worklistInsert(storedClosure);
continue;
}
if (auto *PAI = dyn_cast<PartialApplyInst>(V)) {
SILValue thunkArg = isPartialApplyOfReabstractionThunk(PAI);
if (thunkArg) {
// Handle reabstraction thunks recursively. This may reabstract over
// @convention(block).
worklistInsert(thunkArg);
continue;
}
results.push_back(PAI);
continue;
}
// Ignore other unrecognized values that feed this applied argument.
}
}
namespace {
enum class OwnershipQualifiedKind {
NotApplicable,
Qualified,
Unqualified,
};
struct OwnershipQualifiedKindVisitor : SILInstructionVisitor<OwnershipQualifiedKindVisitor, OwnershipQualifiedKind> {
OwnershipQualifiedKind visitSILInstruction(SILInstruction *I) {
return OwnershipQualifiedKind::NotApplicable;
}
#define QUALIFIED_INST(CLASS) \
OwnershipQualifiedKind visit ## CLASS(CLASS *I) { \
return OwnershipQualifiedKind::Qualified; \
}
QUALIFIED_INST(EndBorrowInst)
QUALIFIED_INST(LoadBorrowInst)
QUALIFIED_INST(CopyValueInst)
QUALIFIED_INST(DestroyValueInst)
#define SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
QUALIFIED_INST(Copy##Name##ValueInst)
#include "swift/AST/ReferenceStorage.def"
#undef QUALIFIED_INST
OwnershipQualifiedKind visitLoadInst(LoadInst *LI) {
if (LI->getOwnershipQualifier() == LoadOwnershipQualifier::Unqualified)
return OwnershipQualifiedKind::Unqualified;
return OwnershipQualifiedKind::Qualified;
}
OwnershipQualifiedKind visitStoreInst(StoreInst *SI) {
if (SI->getOwnershipQualifier() == StoreOwnershipQualifier::Unqualified)
return OwnershipQualifiedKind::Unqualified;
return OwnershipQualifiedKind::Qualified;
}
};
} // end anonymous namespace
bool FunctionOwnershipEvaluator::evaluate(SILInstruction *I) {
assert(I->getFunction() == F.get() && "Can not evaluate function ownership "
"implications of an instruction that "
"does not belong to the instruction "
"that we are evaluating");
switch (OwnershipQualifiedKindVisitor().visit(I)) {
case OwnershipQualifiedKind::Unqualified: {
// If we already know that the function has unqualified ownership, just
// return early.
if (!F.get()->hasQualifiedOwnership())
return true;
// Ok, so we know at this point that we have qualified ownership. If we have
// seen any instructions with qualified ownership, we have an error since
// the function mixes qualified and unqualified instructions.
if (HasOwnershipQualifiedInstruction)
return false;
// Otherwise, set the function to have unqualified ownership. This will
// ensure that no more Qualified instructions can be added to the given
// function.
F.get()->setUnqualifiedOwnership();
return true;
}
case OwnershipQualifiedKind::Qualified: {
// First check if our function has unqualified ownership. If we already do
// have unqualified ownership, then we know that we have already seen an
// unqualified ownership instruction. This means the function has both
// qualified and unqualified instructions. =><=.
if (!F.get()->hasQualifiedOwnership())
return false;
// Ok, at this point we know that we are still qualified. Since functions
// start as qualified, we need to set the HasOwnershipQualifiedInstructions
// so we do not need to look back through the function if we see an
// unqualified instruction later on.
HasOwnershipQualifiedInstruction = true;
return true;
}
case OwnershipQualifiedKind::NotApplicable: {
// Not Applicable instr
return true;
}
}
llvm_unreachable("Unhandled OwnershipQualifiedKind in switch.");
}