forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSILType.cpp
596 lines (501 loc) · 19.6 KB
/
SILType.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
//===--- SILType.cpp - Defines SILType ------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/SILType.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Type.h"
#include "swift/SIL/AbstractionPattern.h"
#include "swift/SIL/SILFunctionConventions.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/TypeLowering.h"
using namespace swift;
using namespace swift::Lowering;
SILType SILType::getExceptionType(const ASTContext &C) {
return SILType::getPrimitiveObjectType(C.getExceptionType());
}
SILType SILType::getNativeObjectType(const ASTContext &C) {
return SILType(C.TheNativeObjectType, SILValueCategory::Object);
}
SILType SILType::getBridgeObjectType(const ASTContext &C) {
return SILType(C.TheBridgeObjectType, SILValueCategory::Object);
}
SILType SILType::getUnknownObjectType(const ASTContext &C) {
return getPrimitiveObjectType(C.TheUnknownObjectType);
}
SILType SILType::getRawPointerType(const ASTContext &C) {
return getPrimitiveObjectType(C.TheRawPointerType);
}
SILType SILType::getBuiltinIntegerType(unsigned bitWidth,
const ASTContext &C) {
return getPrimitiveObjectType(CanType(BuiltinIntegerType::get(bitWidth, C)));
}
SILType SILType::getBuiltinFloatType(BuiltinFloatType::FPKind Kind,
const ASTContext &C) {
CanType ty;
switch (Kind) {
case BuiltinFloatType::IEEE16: ty = C.TheIEEE16Type; break;
case BuiltinFloatType::IEEE32: ty = C.TheIEEE32Type; break;
case BuiltinFloatType::IEEE64: ty = C.TheIEEE64Type; break;
case BuiltinFloatType::IEEE80: ty = C.TheIEEE80Type; break;
case BuiltinFloatType::IEEE128: ty = C.TheIEEE128Type; break;
case BuiltinFloatType::PPC128: ty = C.ThePPC128Type; break;
}
return getPrimitiveObjectType(ty);
}
SILType SILType::getBuiltinWordType(const ASTContext &C) {
return getPrimitiveObjectType(CanType(BuiltinIntegerType::getWordType(C)));
}
SILType SILType::getOptionalType(SILType type) {
auto &ctx = type.getASTContext();
auto optType = BoundGenericEnumType::get(ctx.getOptionalDecl(), Type(),
{ type.getASTType() });
return getPrimitiveType(CanType(optType), type.getCategory());
}
SILType SILType::getSILTokenType(const ASTContext &C) {
return getPrimitiveObjectType(C.TheSILTokenType);
}
bool SILType::isTrivial(SILModule &M) const {
return M.getTypeLowering(*this).isTrivial();
}
bool SILType::isReferenceCounted(SILModule &M) const {
return M.getTypeLowering(*this).isReferenceCounted();
}
bool SILType::isNoReturnFunction() const {
if (auto funcTy = dyn_cast<SILFunctionType>(getASTType()))
return funcTy->isNoReturnFunction();
return false;
}
std::string SILType::getAsString() const {
std::string Result;
llvm::raw_string_ostream OS(Result);
print(OS);
return OS.str();
}
bool SILType::isPointerSizeAndAligned() {
auto &C = getASTContext();
if (isHeapObjectReferenceType()
|| getASTType()->isEqual(C.TheRawPointerType)) {
return true;
}
if (auto intTy = dyn_cast<BuiltinIntegerType>(getASTType()))
return intTy->getWidth().isPointerWidth();
return false;
}
// Reference cast from representations with single pointer low bits.
// Only reference cast to simple single pointer representations.
//
// TODO: handle casting to a loadable existential by generating
// init_existential_ref. Until then, only promote to a heap object dest.
bool SILType::canRefCast(SILType operTy, SILType resultTy, SILModule &M) {
auto fromTy = operTy.unwrapOptionalType();
auto toTy = resultTy.unwrapOptionalType();
return (fromTy.isHeapObjectReferenceType() || fromTy.isClassExistentialType())
&& toTy.isHeapObjectReferenceType();
}
SILType SILType::getFieldType(VarDecl *field, SILModule &M) const {
auto baseTy = getASTType();
AbstractionPattern origFieldTy = M.Types.getAbstractionPattern(field);
CanType substFieldTy;
if (field->hasClangNode()) {
substFieldTy = origFieldTy.getType();
} else {
substFieldTy =
baseTy->getTypeOfMember(M.getSwiftModule(),
field, nullptr)->getCanonicalType();
}
auto loweredTy = M.Types.getLoweredType(origFieldTy, substFieldTy);
if (isAddress() || getClassOrBoundGenericClass() != nullptr) {
return loweredTy.getAddressType();
} else {
return loweredTy.getObjectType();
}
}
SILType SILType::getEnumElementType(EnumElementDecl *elt, SILModule &M) const {
assert(elt->getDeclContext() == getEnumOrBoundGenericEnum());
assert(elt->hasAssociatedValues());
if (auto objectType = getASTType().getOptionalObjectType()) {
assert(elt == M.getASTContext().getOptionalSomeDecl());
return SILType(objectType, getCategory());
}
// If the case is indirect, then the payload is boxed.
if (elt->isIndirect() || elt->getParentEnum()->isIndirect()) {
auto box = M.Types.getBoxTypeForEnumElement(*this, elt);
return SILType(SILType::getPrimitiveObjectType(box).getASTType(),
getCategory());
}
auto substEltTy =
getASTType()->getTypeOfMember(M.getSwiftModule(), elt,
elt->getArgumentInterfaceType());
auto loweredTy =
M.Types.getLoweredType(M.Types.getAbstractionPattern(elt), substEltTy);
return SILType(loweredTy.getASTType(), getCategory());
}
bool SILType::isLoadableOrOpaque(SILModule &M) const {
return isLoadable(M) || !SILModuleConventions(M).useLoweredAddresses();
}
/// True if the type, or the referenced type of an address type, is
/// address-only. For example, it could be a resilient struct or something of
/// unknown size.
bool SILType::isAddressOnly(SILModule &M) const {
return M.getTypeLowering(*this).isAddressOnly();
}
SILType SILType::substGenericArgs(SILModule &M,
SubstitutionMap SubMap) const {
auto fnTy = castTo<SILFunctionType>();
auto canFnTy = CanSILFunctionType(fnTy->substGenericArgs(M, SubMap));
return SILType::getPrimitiveObjectType(canFnTy);
}
bool SILType::isHeapObjectReferenceType() const {
auto &C = getASTContext();
auto Ty = getASTType();
if (Ty->isBridgeableObjectType())
return true;
if (Ty->isEqual(C.TheNativeObjectType))
return true;
if (Ty->isEqual(C.TheBridgeObjectType))
return true;
if (Ty->isEqual(C.TheUnknownObjectType))
return true;
if (is<SILBoxType>())
return true;
return false;
}
SILType SILType::getMetatypeInstanceType(SILModule &M) const {
CanType MetatypeType = getASTType();
assert(MetatypeType->is<AnyMetatypeType>() &&
"This method should only be called on SILTypes with an underlying "
"metatype type.");
Type instanceType =
MetatypeType->castTo<AnyMetatypeType>()->getInstanceType();
return M.Types.getLoweredType(instanceType->getCanonicalType());
}
bool SILType::aggregateContainsRecord(SILType Record, SILModule &Mod) const {
assert(!hasArchetype() && "Agg should be proven to not be generic "
"before passed to this function.");
assert(!Record.hasArchetype() && "Record should be proven to not be generic "
"before passed to this function.");
llvm::SmallVector<SILType, 8> Worklist;
Worklist.push_back(*this);
// For each "subrecord" of agg in the worklist...
while (!Worklist.empty()) {
SILType Ty = Worklist.pop_back_val();
// If it is record, we succeeded. Return true.
if (Ty == Record)
return true;
// Otherwise, we gather up sub-records that need to be checked for
// checking... First handle the tuple case.
if (CanTupleType TT = Ty.getAs<TupleType>()) {
for (unsigned i = 0, e = TT->getNumElements(); i != e; ++i)
Worklist.push_back(Ty.getTupleElementType(i));
continue;
}
// Then if we have an enum...
if (EnumDecl *E = Ty.getEnumOrBoundGenericEnum()) {
for (auto Elt : E->getAllElements())
if (Elt->hasAssociatedValues())
Worklist.push_back(Ty.getEnumElementType(Elt, Mod));
continue;
}
// Then if we have a struct address...
if (StructDecl *S = Ty.getStructOrBoundGenericStruct())
for (VarDecl *Var : S->getStoredProperties())
Worklist.push_back(Ty.getFieldType(Var, Mod));
// If we have a class address, it is a pointer so it cannot contain other
// types.
// If we reached this point, then this type has no subrecords. Since it does
// not equal our record, we can skip it.
}
// Could not find the record in the aggregate.
return false;
}
bool SILType::aggregateHasUnreferenceableStorage() const {
if (auto s = getStructOrBoundGenericStruct()) {
return s->hasUnreferenceableStorage();
}
return false;
}
SILType SILType::getOptionalObjectType() const {
if (auto objectTy = getASTType().getOptionalObjectType()) {
return SILType(objectTy, getCategory());
}
return SILType();
}
SILType SILType::unwrapOptionalType() const {
if (auto objectTy = getOptionalObjectType()) {
return objectTy;
}
return *this;
}
/// True if the given type value is nonnull, and the represented type is NSError
/// or CFError, the error classes for which we support "toll-free" bridging to
/// Error existentials.
static bool isBridgedErrorClass(SILModule &M,
Type t) {
// There's no bridging if ObjC interop is disabled.
if (!M.getASTContext().LangOpts.EnableObjCInterop)
return false;
if (!t)
return false;
if (auto archetypeType = t->getAs<ArchetypeType>())
t = archetypeType->getSuperclass();
// NSError (TODO: and CFError) can be bridged.
auto nsErrorType = M.Types.getNSErrorType();
if (t && nsErrorType && nsErrorType->isExactSuperclassOf(t)) {
return true;
}
return false;
}
ExistentialRepresentation
SILType::getPreferredExistentialRepresentation(SILModule &M,
Type containedType) const {
// Existential metatypes always use metatype representation.
if (is<ExistentialMetatypeType>())
return ExistentialRepresentation::Metatype;
// If the type isn't existential, then there is no representation.
if (!isExistentialType())
return ExistentialRepresentation::None;
auto layout = getASTType().getExistentialLayout();
if (layout.isErrorExistential()) {
// NSError or CFError references can be adopted directly as Error
// existentials.
if (isBridgedErrorClass(M, containedType)) {
return ExistentialRepresentation::Class;
} else {
return ExistentialRepresentation::Boxed;
}
}
// A class-constrained protocol composition can adopt the conforming
// class reference directly.
if (layout.requiresClass())
return ExistentialRepresentation::Class;
// Otherwise, we need to use a fixed-sized buffer.
return ExistentialRepresentation::Opaque;
}
bool
SILType::canUseExistentialRepresentation(SILModule &M,
ExistentialRepresentation repr,
Type containedType) const {
switch (repr) {
case ExistentialRepresentation::None:
return !isAnyExistentialType();
case ExistentialRepresentation::Opaque:
case ExistentialRepresentation::Class:
case ExistentialRepresentation::Boxed: {
// Look at the protocols to see what representation is appropriate.
if (!isExistentialType())
return false;
auto layout = getASTType().getExistentialLayout();
switch (layout.getKind()) {
// A class-constrained composition uses ClassReference representation;
// otherwise, we use a fixed-sized buffer.
case ExistentialLayout::Kind::Class:
return repr == ExistentialRepresentation::Class;
// The (uncomposed) Error existential uses a special boxed
// representation. It can also adopt class references of bridged
// error types directly.
case ExistentialLayout::Kind::Error:
return repr == ExistentialRepresentation::Boxed
|| (repr == ExistentialRepresentation::Class
&& isBridgedErrorClass(M, containedType));
case ExistentialLayout::Kind::Opaque:
return repr == ExistentialRepresentation::Opaque;
}
llvm_unreachable("unknown existential kind!");
}
case ExistentialRepresentation::Metatype:
return is<ExistentialMetatypeType>();
}
llvm_unreachable("Unhandled ExistentialRepresentation in switch.");
}
SILType SILType::getReferentType(SILModule &M) const {
auto Ty = castTo<ReferenceStorageType>();
return M.Types.getLoweredType(Ty->getReferentType()->getCanonicalType());
}
SILType SILType::mapTypeOutOfContext() const {
return SILType::getPrimitiveType(getASTType()->mapTypeOutOfContext()
->getCanonicalType(),
getCategory());
}
CanType
SILBoxType::getFieldLoweredType(SILModule &M, unsigned index) const {
auto fieldTy = getLayout()->getFields()[index].getLoweredType();
// Apply generic arguments if the layout is generic.
if (auto subMap = getSubstitutions()) {
auto sig = getLayout()->getGenericSignature();
return SILType::getPrimitiveObjectType(fieldTy)
.subst(M,
QuerySubstitutionMap{subMap},
LookUpConformanceInSubstitutionMap(subMap),
sig)
.getASTType();
}
return fieldTy;
}
ValueOwnershipKind
SILResultInfo::getOwnershipKind(SILModule &M,
CanGenericSignature signature) const {
GenericContextScope GCS(M.Types, signature);
bool IsTrivial = getSILStorageType().isTrivial(M);
switch (getConvention()) {
case ResultConvention::Indirect:
return SILModuleConventions(M).isSILIndirect(*this)
? ValueOwnershipKind::Trivial
: ValueOwnershipKind::Owned;
case ResultConvention::Autoreleased:
case ResultConvention::Owned:
return ValueOwnershipKind::Owned;
case ResultConvention::Unowned:
case ResultConvention::UnownedInnerPointer:
if (IsTrivial)
return ValueOwnershipKind::Trivial;
return ValueOwnershipKind::Unowned;
}
llvm_unreachable("Unhandled ResultConvention in switch.");
}
SILModuleConventions::SILModuleConventions(const SILModule &M)
: loweredAddresses(!M.getASTContext().LangOpts.EnableSILOpaqueValues
|| M.getStage() == SILStage::Lowered) {}
bool SILModuleConventions::isReturnedIndirectlyInSIL(SILType type,
SILModule &M) {
if (SILModuleConventions(M).loweredAddresses)
return type.isAddressOnly(M);
return false;
}
bool SILModuleConventions::isPassedIndirectlyInSIL(SILType type, SILModule &M) {
if (SILModuleConventions(M).loweredAddresses)
return type.isAddressOnly(M);
return false;
}
bool SILFunctionType::isNoReturnFunction() const {
for (unsigned i = 0, e = getNumResults(); i < e; ++i) {
if (getResults()[i].getType()->isUninhabited())
return true;
}
return false;
}
#ifndef NDEBUG
static bool areOnlyAbstractionDifferent(CanType type1, CanType type2) {
assert(type1->isLegalSILType());
assert(type2->isLegalSILType());
// Exact equality is fine.
if (type1 == type2)
return true;
// Either both types should be optional or neither should be.
if (auto object1 = type1.getOptionalObjectType()) {
auto object2 = type2.getOptionalObjectType();
if (!object2)
return false;
return areOnlyAbstractionDifferent(object1, object2);
}
if (type2.getOptionalObjectType())
return false;
// Either both types should be tuples or neither should be.
if (auto tuple1 = dyn_cast<TupleType>(type1)) {
auto tuple2 = dyn_cast<TupleType>(type2);
if (!tuple2)
return false;
if (tuple1->getNumElements() != tuple2->getNumElements())
return false;
for (auto i : indices(tuple2->getElementTypes()))
if (!areOnlyAbstractionDifferent(tuple1.getElementType(i),
tuple2.getElementType(i)))
return false;
return true;
}
if (isa<TupleType>(type2))
return false;
// Either both types should be metatypes or neither should be.
if (auto meta1 = dyn_cast<AnyMetatypeType>(type1)) {
auto meta2 = dyn_cast<AnyMetatypeType>(type2);
if (!meta2)
return false;
if (meta1.getInstanceType() != meta2.getInstanceType())
return false;
return true;
}
// Either both types should be functions or neither should be.
if (auto fn1 = dyn_cast<SILFunctionType>(type1)) {
auto fn2 = dyn_cast<SILFunctionType>(type2);
if (!fn2)
return false;
// TODO: maybe there are checks we can do here?
(void)fn1;
(void)fn2;
return true;
}
if (isa<SILFunctionType>(type2))
return false;
llvm_unreachable("no other types should differ by abstraction");
}
#endif
/// Given two SIL types which are representations of the same type,
/// check whether they have an abstraction difference.
bool SILType::hasAbstractionDifference(SILFunctionTypeRepresentation rep,
SILType type2) {
CanType ct1 = getASTType();
CanType ct2 = type2.getASTType();
assert(getSILFunctionLanguage(rep) == SILFunctionLanguage::C ||
areOnlyAbstractionDifferent(ct1, ct2));
(void)ct1;
(void)ct2;
// Assuming that we've applied the same substitutions to both types,
// abstraction equality should equal type equality.
return (*this != type2);
}
bool SILType::isLoweringOf(SILModule &Mod, CanType formalType) {
SILType loweredType = *this;
// Optional lowers its contained type. The difference between Optional
// and IUO is lowered away.
SILType loweredObjectType = loweredType.getOptionalObjectType();
CanType formalObjectType = formalType.getOptionalObjectType();
if (loweredObjectType) {
return formalObjectType &&
loweredObjectType.isLoweringOf(Mod, formalObjectType);
}
// Metatypes preserve their instance type through lowering.
if (loweredType.is<MetatypeType>()) {
if (auto formalMT = dyn_cast<MetatypeType>(formalType)) {
return loweredType.getMetatypeInstanceType(Mod).isLoweringOf(
Mod, formalMT.getInstanceType());
}
}
if (auto loweredEMT = loweredType.getAs<ExistentialMetatypeType>()) {
if (auto formalEMT = dyn_cast<ExistentialMetatypeType>(formalType)) {
return loweredEMT.getInstanceType() == formalEMT.getInstanceType();
}
}
// TODO: Function types go through a more elaborate lowering.
// For now, just check that a SIL function type came from some AST function
// type.
if (loweredType.is<SILFunctionType>())
return isa<AnyFunctionType>(formalType);
// Tuples are lowered elementwise.
// TODO: Will this always be the case?
if (auto loweredTT = loweredType.getAs<TupleType>()) {
if (auto formalTT = dyn_cast<TupleType>(formalType)) {
if (loweredTT->getNumElements() != formalTT->getNumElements())
return false;
for (unsigned i = 0, e = loweredTT->getNumElements(); i < e; ++i) {
auto loweredTTEltType =
SILType::getPrimitiveAddressType(loweredTT.getElementType(i));
if (!loweredTTEltType.isLoweringOf(Mod, formalTT.getElementType(i)))
return false;
}
return true;
}
}
// Dynamic self has the same lowering as its contained type.
if (auto dynamicSelf = dyn_cast<DynamicSelfType>(formalType))
formalType = dynamicSelf.getSelfType();
// Other types are preserved through lowering.
return loweredType.getASTType() == formalType;
}