-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_cnn.py
65 lines (52 loc) · 1.92 KB
/
model_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.utils import plot_model
import data_engine
import common
class model_cnn(object):
def __init__(self):
self.batch_size = 32
self.num_classes = 10
self.epochs = 20
self.data_engine = data_engine.data_engine()
self.data_engine.load()
end
def build(self):
self.model = Sequential()
'''
self.model.add(Flatten(input_shape=(32, 32, 1)))
self.model.add(Dense(self.num_classes)) # 10
self.model.add(Activation('softmax'))
'''
## CNN is so strong that could reach 100% accuracy on test set
self.model.add(Conv2D(16, (3, 3), padding='same', data_format='channels_last', input_shape=(32, 32, 1)))
self.model.add(Activation('relu'))
self.model.add(Conv2D(8, (3, 3)))
self.model.add(Activation('relu'))
self.model.add(MaxPooling2D(pool_size=(2, 2)))
self.model.add(Dropout(0.25))
self.model.add(Flatten())
self.model.add(Dense(128))
self.model.add(Activation('relu'))
self.model.add(Dropout(0.5))
self.model.add(Dense(self.num_classes)) # 10
self.model.add(Activation('softmax'))
self.opt = keras.optimizers.rmsprop(lr=0.001, decay=1e-6)
self.model.compile(loss='categorical_crossentropy', optimizer=self.opt, metrics=['accuracy'])
plot_model(self.model, to_file='model.png', show_shapes=True)
end
def train(self):
train_x, train_y = self.data_engine.train_set()
test_x, test_y = self.data_engine.test_set()
train_y = keras.utils.to_categorical(train_y, self.num_classes)
test_y = keras.utils.to_categorical(test_y, self.num_classes)
self.model.fit(train_x, train_y, batch_size=self.batch_size, epochs=self.epochs, validation_data=(test_x, test_y), shuffle=True)
end
end
if __name__ == '__main__':
model = model_cnn()
model.build()
# model.train()
end