-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
221 lines (169 loc) · 6.39 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from PIL import Image
from gtts import gTTS
# ocr import
import os
import pytesseract
import subprocess
import picamera
import numpy as np
import cv2
import pyttsx3
import datetime
#switch import
import RPi.GPIO as GPIO
import time
import imutils
from picamera import PiCamera
GPIO.setmode(GPIO.BOARD)
GPIO.setup(11, GPIO.IN, pull_up_down = GPIO.PUD_DOWN)
GPIO.setup(13, GPIO.IN, pull_up_down = GPIO.PUD_DOWN)
# Face recognition function
def faceRecog():
recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read('/home/pi/Desktop/switch/FacialRecognitionProject/trainer/trainer.yml')
cascadePath = "/home/pi/Desktop/switch/FacialRecognitionProject/haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascadePath);
font = cv2.FONT_HERSHEY_SIMPLEX
#iniciate id counter
id = 0
# names related to ids: example ==> Marcelo: id=1, etc
names = ['None', 'ahmed', 'ibrahim', 'safi', 'najmul', 'Sakib']
# Initialize and start realtime video capture
#cam = cv2.VideoCapture(0)
# initialize the camera and grab a reference to the raw camera capture
cam = PiCamera()
cam.resolution = (1080, 720)
cam.framerate = 32
cam.rotation = 90
cam.brightness=60
#cam.set(3, 640) # set video widht
#cam.set(4, 480) # set video height
# Define min window size to be recognized as a face
minW = 0.1*640
minH = 0.1*480
def speechCallName(text_str):
engine = pyttsx3.init()
engine.setProperty('voice', 'english+f3') # changes the voice
engine.setProperty('rate', 125)
engine.say(text_str)
engine.runAndWait()
def face_recognition():
while not GPIO.input(11):
#while True:
print("yes3")
cam.capture("/home/pi/Desktop/switch/face1.png")
#img = np.asarray(Image.open("/home/pi/Desktop/switch/FacialRecognitionProject/face1.png"))
#img =cam.read()
img = cv2.imread("/home/pi/Desktop/switch/face1.png")
img = cv2.flip(img, -1) # Flip vertically
img=imutils.rotate(img,angle=180)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor = 1.2,
minNeighbors = 5,
minSize = (int(minW), int(minH)),
)
for(x,y,w,h) in faces:
cv2.rectangle(img, (x,y), (x+w,y+h), (0,255,0), 2)
id, confidence = recognizer.predict(gray[y:y+h,x:x+w])
# Check if confidence is less them 100 ==> "0" is perfect match
if ((100 - confidence)>40):
id = names[id]
confidence = " {0}%".format(round(100 - confidence))
#file1 = open("MyFile.txt","a")
#file1.write("\n"+str(id)+ " at: "+str(datetime.datetime.now()))
else:
id = "unknown"
confidence = " {0}%".format(round(100 - confidence))
cv2.putText(img, str(id), (x+5,y-5), font, 1, (255,255,255), 2)
cv2.putText(img, str(confidence), (x+5,y+h-5), font, 1, (255,255,0), 1)
cv2.imshow('camera',img)
print("yes3")
#if str(id)!= "unknown":
# speechCallName(str(id))
k = cv2.waitKey(10) & 0xff # Press 'ESC' for exiting video
if k == 27:
break
face_recognition()
cam.close()
cam.release()
cv2.destroyAllWindows()
# End face recognition function
src_path = "/home/pi/Desktop/switch/"
def captureImage():
print("take picture")
with picamera.PiCamera() as camera:
camera.start_preview()
camera.resolution = (1080,720)
#camera.framerate=15
camera.brightness=60
camera.rotation = 90
camera.capture('/home/pi/Desktop/switch/p1.png')
time.sleep(1)
camera.capture('/home/pi/Desktop/switch/p2.png')
time.sleep(1)
camera.capture('/home/pi/Desktop/switch/p3.png')
camera.start_preview()
print("taken")
def get_string(img_path):
#print("yes1 "+img_path)
# Read image with opencv
img = cv2.imread(img_path)
print("yes2")
# Convert to gray
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Apply dilation and erosion to remove some noise
kernel = np.ones((1, 1), np.uint8)
img = cv2.dilate(img, kernel, iterations=1)
img = cv2.erode(img, kernel, iterations=1)
# Write image after removed noise
cv2.imwrite(src_path + "removed_noise.png", img)
# Apply threshold to get image with only black and white
#img = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 31, 2)
# Write the image after apply opencv to do some ...
cv2.imwrite(src_path + "thres.png", img)
# Recognize text with tesseract for python
result = pytesseract.image_to_string(Image.open(src_path + "thres.png"))
# Remove template file
#os.remove(temp)
return result
def speechCall(text_ocr):
'''text2speech = gTTS(text=text_ocr,lang='en')
text2speech.save("sample.mp3")
os.system("mpg321 sample.mp3")'''
engine = pyttsx3.init()
engine.setProperty('voice', 'english+f3') # changes the voice
engine.setProperty('rate', 125)
engine.say(text_ocr)
engine.runAndWait()
while True:
if GPIO.input(11):
print("Clicked for text to speech")
try:
captureImage()
except:
print("error occured in image")
try:
text_ocr1 = get_string(src_path + "p3.png")
if len(text_ocr1)!=0:
print(text_ocr1)
speechCall(text_ocr1)
else:
print("No text in image 3")
text_ocr2 = get_string(src_path + "p2.png")
print(text_ocr2)
if len(text_ocr2)!=0:
speechCall(text_ocr2)
except:
#speechCall("no text in image")
print("error occured in OCR")
elif GPIO.input(13):
print("Clicked for Face recognition")
try:
faceRecog()
except:
print("error occured in Face recognition")
else:
print("No click")
time.sleep(1)