forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pydantic_models_to_grammar.py
1322 lines (1103 loc) · 54.9 KB
/
pydantic_models_to_grammar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import annotations
import inspect
import json
import re
from copy import copy
from enum import Enum
from inspect import getdoc, isclass
from typing import TYPE_CHECKING, Any, Callable, List, Optional, Union, get_args, get_origin, get_type_hints
from docstring_parser import parse
from pydantic import BaseModel, create_model
if TYPE_CHECKING:
from types import GenericAlias
else:
# python 3.8 compat
from typing import _GenericAlias as GenericAlias
# TODO: fix this
# pyright: reportAttributeAccessIssue=information
class PydanticDataType(Enum):
"""
Defines the data types supported by the grammar_generator.
Attributes:
STRING (str): Represents a string data type.
BOOLEAN (str): Represents a boolean data type.
INTEGER (str): Represents an integer data type.
FLOAT (str): Represents a float data type.
OBJECT (str): Represents an object data type.
ARRAY (str): Represents an array data type.
ENUM (str): Represents an enum data type.
CUSTOM_CLASS (str): Represents a custom class data type.
"""
STRING = "string"
TRIPLE_QUOTED_STRING = "triple_quoted_string"
MARKDOWN_CODE_BLOCK = "markdown_code_block"
BOOLEAN = "boolean"
INTEGER = "integer"
FLOAT = "float"
OBJECT = "object"
ARRAY = "array"
ENUM = "enum"
ANY = "any"
NULL = "null"
CUSTOM_CLASS = "custom-class"
CUSTOM_DICT = "custom-dict"
SET = "set"
def map_pydantic_type_to_gbnf(pydantic_type: type[Any]) -> str:
origin_type = get_origin(pydantic_type)
origin_type = pydantic_type if origin_type is None else origin_type
if isclass(origin_type) and issubclass(origin_type, str):
return PydanticDataType.STRING.value
elif isclass(origin_type) and issubclass(origin_type, bool):
return PydanticDataType.BOOLEAN.value
elif isclass(origin_type) and issubclass(origin_type, int):
return PydanticDataType.INTEGER.value
elif isclass(origin_type) and issubclass(origin_type, float):
return PydanticDataType.FLOAT.value
elif isclass(origin_type) and issubclass(origin_type, Enum):
return PydanticDataType.ENUM.value
elif isclass(origin_type) and issubclass(origin_type, BaseModel):
return format_model_and_field_name(origin_type.__name__)
elif origin_type is list:
element_type = get_args(pydantic_type)[0]
return f"{map_pydantic_type_to_gbnf(element_type)}-list"
elif origin_type is set:
element_type = get_args(pydantic_type)[0]
return f"{map_pydantic_type_to_gbnf(element_type)}-set"
elif origin_type is Union:
union_types = get_args(pydantic_type)
union_rules = [map_pydantic_type_to_gbnf(ut) for ut in union_types]
return f"union-{'-or-'.join(union_rules)}"
elif origin_type is Optional:
element_type = get_args(pydantic_type)[0]
return f"optional-{map_pydantic_type_to_gbnf(element_type)}"
elif isclass(origin_type):
return f"{PydanticDataType.CUSTOM_CLASS.value}-{format_model_and_field_name(origin_type.__name__)}"
elif origin_type is dict:
key_type, value_type = get_args(pydantic_type)
return f"custom-dict-key-type-{format_model_and_field_name(map_pydantic_type_to_gbnf(key_type))}-value-type-{format_model_and_field_name(map_pydantic_type_to_gbnf(value_type))}"
else:
return "unknown"
def format_model_and_field_name(model_name: str) -> str:
parts = re.findall("[A-Z][^A-Z]*", model_name)
if not parts: # Check if the list is empty
return model_name.lower().replace("_", "-")
return "-".join(part.lower().replace("_", "-") for part in parts)
def generate_list_rule(element_type):
"""
Generate a GBNF rule for a list of a given element type.
:param element_type: The type of the elements in the list (e.g., 'string').
:return: A string representing the GBNF rule for a list of the given type.
"""
rule_name = f"{map_pydantic_type_to_gbnf(element_type)}-list"
element_rule = map_pydantic_type_to_gbnf(element_type)
list_rule = rf'{rule_name} ::= "[" {element_rule} ("," {element_rule})* "]"'
return list_rule
def get_members_structure(cls, rule_name):
if issubclass(cls, Enum):
# Handle Enum types
members = [f'"\\"{member.value}\\""' for name, member in cls.__members__.items()]
return f"{cls.__name__.lower()} ::= " + " | ".join(members)
if cls.__annotations__ and cls.__annotations__ != {}:
result = f'{rule_name} ::= "{{"'
# Modify this comprehension
members = [
f' "\\"{name}\\"" ":" {map_pydantic_type_to_gbnf(param_type)}'
for name, param_type in get_type_hints(cls).items()
if name != "self"
]
result += '"," '.join(members)
result += ' "}"'
return result
if rule_name == "custom-class-any":
result = f"{rule_name} ::= "
result += "value"
return result
init_signature = inspect.signature(cls.__init__)
parameters = init_signature.parameters
result = f'{rule_name} ::= "{{"'
# Modify this comprehension too
members = [
f' "\\"{name}\\"" ":" {map_pydantic_type_to_gbnf(param.annotation)}'
for name, param in parameters.items()
if name != "self" and param.annotation != inspect.Parameter.empty
]
result += '", "'.join(members)
result += ' "}"'
return result
def regex_to_gbnf(regex_pattern: str) -> str:
"""
Translate a basic regex pattern to a GBNF rule.
Note: This function handles only a subset of simple regex patterns.
"""
gbnf_rule = regex_pattern
# Translate common regex components to GBNF
gbnf_rule = gbnf_rule.replace("\\d", "[0-9]")
gbnf_rule = gbnf_rule.replace("\\s", "[ \t\n]")
# Handle quantifiers and other regex syntax that is similar in GBNF
# (e.g., '*', '+', '?', character classes)
return gbnf_rule
def generate_gbnf_integer_rules(max_digit=None, min_digit=None):
"""
Generate GBNF Integer Rules
Generates GBNF (Generalized Backus-Naur Form) rules for integers based on the given maximum and minimum digits.
Parameters:
max_digit (int): The maximum number of digits for the integer. Default is None.
min_digit (int): The minimum number of digits for the integer. Default is None.
Returns:
integer_rule (str): The identifier for the integer rule generated.
additional_rules (list): A list of additional rules generated based on the given maximum and minimum digits.
"""
additional_rules = []
# Define the rule identifier based on max_digit and min_digit
integer_rule = "integer-part"
if max_digit is not None:
integer_rule += f"-max{max_digit}"
if min_digit is not None:
integer_rule += f"-min{min_digit}"
# Handling Integer Rules
if max_digit is not None or min_digit is not None:
# Start with an empty rule part
integer_rule_part = ""
# Add mandatory digits as per min_digit
if min_digit is not None:
integer_rule_part += "[0-9] " * min_digit
# Add optional digits up to max_digit
if max_digit is not None:
optional_digits = max_digit - (min_digit if min_digit is not None else 0)
integer_rule_part += "".join(["[0-9]? " for _ in range(optional_digits)])
# Trim the rule part and append it to additional rules
integer_rule_part = integer_rule_part.strip()
if integer_rule_part:
additional_rules.append(f"{integer_rule} ::= {integer_rule_part}")
return integer_rule, additional_rules
def generate_gbnf_float_rules(max_digit=None, min_digit=None, max_precision=None, min_precision=None):
"""
Generate GBNF float rules based on the given constraints.
:param max_digit: Maximum number of digits in the integer part (default: None)
:param min_digit: Minimum number of digits in the integer part (default: None)
:param max_precision: Maximum number of digits in the fractional part (default: None)
:param min_precision: Minimum number of digits in the fractional part (default: None)
:return: A tuple containing the float rule and additional rules as a list
Example Usage:
max_digit = 3
min_digit = 1
max_precision = 2
min_precision = 1
generate_gbnf_float_rules(max_digit, min_digit, max_precision, min_precision)
Output:
('float-3-1-2-1', ['integer-part-max3-min1 ::= [0-9] [0-9] [0-9]?', 'fractional-part-max2-min1 ::= [0-9] [0-9]?', 'float-3-1-2-1 ::= integer-part-max3-min1 "." fractional-part-max2-min
*1'])
Note:
GBNF stands for Generalized Backus-Naur Form, which is a notation technique to specify the syntax of programming languages or other formal grammars.
"""
additional_rules = []
# Define the integer part rule
integer_part_rule = (
"integer-part"
+ (f"-max{max_digit}" if max_digit is not None else "")
+ (f"-min{min_digit}" if min_digit is not None else "")
)
# Define the fractional part rule based on precision constraints
fractional_part_rule = "fractional-part"
fractional_rule_part = ""
if max_precision is not None or min_precision is not None:
fractional_part_rule += (f"-max{max_precision}" if max_precision is not None else "") + (
f"-min{min_precision}" if min_precision is not None else ""
)
# Minimum number of digits
fractional_rule_part = "[0-9]" * (min_precision if min_precision is not None else 1)
# Optional additional digits
fractional_rule_part += "".join(
[" [0-9]?"] * ((max_precision - (
min_precision if min_precision is not None else 1)) if max_precision is not None else 0)
)
additional_rules.append(f"{fractional_part_rule} ::= {fractional_rule_part}")
# Define the float rule
float_rule = f"float-{max_digit if max_digit is not None else 'X'}-{min_digit if min_digit is not None else 'X'}-{max_precision if max_precision is not None else 'X'}-{min_precision if min_precision is not None else 'X'}"
additional_rules.append(f'{float_rule} ::= {integer_part_rule} "." {fractional_part_rule}')
# Generating the integer part rule definition, if necessary
if max_digit is not None or min_digit is not None:
integer_rule_part = "[0-9]"
if min_digit is not None and min_digit > 1:
integer_rule_part += " [0-9]" * (min_digit - 1)
if max_digit is not None:
integer_rule_part += "".join([" [0-9]?"] * (max_digit - (min_digit if min_digit is not None else 1)))
additional_rules.append(f"{integer_part_rule} ::= {integer_rule_part.strip()}")
return float_rule, additional_rules
def generate_gbnf_rule_for_type(
model_name, field_name, field_type, is_optional, processed_models, created_rules, field_info=None
) -> tuple[str, list[str]]:
"""
Generate GBNF rule for a given field type.
:param model_name: Name of the model.
:param field_name: Name of the field.
:param field_type: Type of the field.
:param is_optional: Whether the field is optional.
:param processed_models: List of processed models.
:param created_rules: List of created rules.
:param field_info: Additional information about the field (optional).
:return: Tuple containing the GBNF type and a list of additional rules.
:rtype: tuple[str, list]
"""
rules = []
field_name = format_model_and_field_name(field_name)
gbnf_type = map_pydantic_type_to_gbnf(field_type)
origin_type = get_origin(field_type)
origin_type = field_type if origin_type is None else origin_type
if isclass(origin_type) and issubclass(origin_type, BaseModel):
nested_model_name = format_model_and_field_name(field_type.__name__)
nested_model_rules, _ = generate_gbnf_grammar(field_type, processed_models, created_rules)
rules.extend(nested_model_rules)
gbnf_type, rules = nested_model_name, rules
elif isclass(origin_type) and issubclass(origin_type, Enum):
enum_values = [f'"\\"{e.value}\\""' for e in field_type] # Adding escaped quotes
enum_rule = f"{model_name}-{field_name} ::= {' | '.join(enum_values)}"
rules.append(enum_rule)
gbnf_type, rules = model_name + "-" + field_name, rules
elif origin_type is list: # Array
element_type = get_args(field_type)[0]
element_rule_name, additional_rules = generate_gbnf_rule_for_type(
model_name, f"{field_name}-element", element_type, is_optional, processed_models, created_rules
)
rules.extend(additional_rules)
array_rule = f"""{model_name}-{field_name} ::= "[" ws {element_rule_name} ("," ws {element_rule_name})* "]" """
rules.append(array_rule)
gbnf_type, rules = model_name + "-" + field_name, rules
elif origin_type is set: # Array
element_type = get_args(field_type)[0]
element_rule_name, additional_rules = generate_gbnf_rule_for_type(
model_name, f"{field_name}-element", element_type, is_optional, processed_models, created_rules
)
rules.extend(additional_rules)
array_rule = f"""{model_name}-{field_name} ::= "[" ws {element_rule_name} ("," ws {element_rule_name})* "]" """
rules.append(array_rule)
gbnf_type, rules = model_name + "-" + field_name, rules
elif gbnf_type.startswith("custom-class-"):
rules.append(get_members_structure(field_type, gbnf_type))
elif gbnf_type.startswith("custom-dict-"):
key_type, value_type = get_args(field_type)
additional_key_type, additional_key_rules = generate_gbnf_rule_for_type(
model_name, f"{field_name}-key-type", key_type, is_optional, processed_models, created_rules
)
additional_value_type, additional_value_rules = generate_gbnf_rule_for_type(
model_name, f"{field_name}-value-type", value_type, is_optional, processed_models, created_rules
)
gbnf_type = rf'{gbnf_type} ::= "{{" ( {additional_key_type} ": " {additional_value_type} ("," "\n" ws {additional_key_type} ":" {additional_value_type})* )? "}}" '
rules.extend(additional_key_rules)
rules.extend(additional_value_rules)
elif gbnf_type.startswith("union-"):
union_types = get_args(field_type)
union_rules = []
for union_type in union_types:
if isinstance(union_type, GenericAlias):
union_gbnf_type, union_rules_list = generate_gbnf_rule_for_type(
model_name, field_name, union_type, False, processed_models, created_rules
)
union_rules.append(union_gbnf_type)
rules.extend(union_rules_list)
elif not issubclass(union_type, type(None)):
union_gbnf_type, union_rules_list = generate_gbnf_rule_for_type(
model_name, field_name, union_type, False, processed_models, created_rules
)
union_rules.append(union_gbnf_type)
rules.extend(union_rules_list)
# Defining the union grammar rule separately
if len(union_rules) == 1:
union_grammar_rule = f"{model_name}-{field_name}-optional ::= {' | '.join(union_rules)} | null"
else:
union_grammar_rule = f"{model_name}-{field_name}-union ::= {' | '.join(union_rules)}"
rules.append(union_grammar_rule)
if len(union_rules) == 1:
gbnf_type = f"{model_name}-{field_name}-optional"
else:
gbnf_type = f"{model_name}-{field_name}-union"
elif isclass(origin_type) and issubclass(origin_type, str):
if field_info and hasattr(field_info, "json_schema_extra") and field_info.json_schema_extra is not None:
triple_quoted_string = field_info.json_schema_extra.get("triple_quoted_string", False)
markdown_string = field_info.json_schema_extra.get("markdown_code_block", False)
gbnf_type = PydanticDataType.TRIPLE_QUOTED_STRING.value if triple_quoted_string else PydanticDataType.STRING.value
gbnf_type = PydanticDataType.MARKDOWN_CODE_BLOCK.value if markdown_string else gbnf_type
elif field_info and hasattr(field_info, "pattern"):
# Convert regex pattern to grammar rule
regex_pattern = field_info.regex.pattern
gbnf_type = f"pattern-{field_name} ::= {regex_to_gbnf(regex_pattern)}"
else:
gbnf_type = PydanticDataType.STRING.value
elif (
isclass(origin_type)
and issubclass(origin_type, float)
and field_info
and hasattr(field_info, "json_schema_extra")
and field_info.json_schema_extra is not None
):
# Retrieve precision attributes for floats
max_precision = (
field_info.json_schema_extra.get("max_precision") if field_info and hasattr(field_info,
"json_schema_extra") else None
)
min_precision = (
field_info.json_schema_extra.get("min_precision") if field_info and hasattr(field_info,
"json_schema_extra") else None
)
max_digits = field_info.json_schema_extra.get("max_digit") if field_info and hasattr(field_info,
"json_schema_extra") else None
min_digits = field_info.json_schema_extra.get("min_digit") if field_info and hasattr(field_info,
"json_schema_extra") else None
# Generate GBNF rule for float with given attributes
gbnf_type, rules = generate_gbnf_float_rules(
max_digit=max_digits, min_digit=min_digits, max_precision=max_precision, min_precision=min_precision
)
elif (
isclass(origin_type)
and issubclass(origin_type, int)
and field_info
and hasattr(field_info, "json_schema_extra")
and field_info.json_schema_extra is not None
):
# Retrieve digit attributes for integers
max_digits = field_info.json_schema_extra.get("max_digit") if field_info and hasattr(field_info,
"json_schema_extra") else None
min_digits = field_info.json_schema_extra.get("min_digit") if field_info and hasattr(field_info,
"json_schema_extra") else None
# Generate GBNF rule for integer with given attributes
gbnf_type, rules = generate_gbnf_integer_rules(max_digit=max_digits, min_digit=min_digits)
else:
gbnf_type, rules = gbnf_type, []
return gbnf_type, rules
def generate_gbnf_grammar(model: type[BaseModel], processed_models: set[type[BaseModel]], created_rules: dict[str, list[str]]) -> tuple[list[str], bool]:
"""
Generate GBnF Grammar
Generates a GBnF grammar for a given model.
:param model: A Pydantic model class to generate the grammar for. Must be a subclass of BaseModel.
:param processed_models: A set of already processed models to prevent infinite recursion.
:param created_rules: A dict containing already created rules to prevent duplicates.
:return: A list of GBnF grammar rules in string format. And two booleans indicating if an extra markdown or triple quoted string is in the grammar.
Example Usage:
```
model = MyModel
processed_models = set()
created_rules = dict()
gbnf_grammar = generate_gbnf_grammar(model, processed_models, created_rules)
```
"""
if model in processed_models:
return [], False
processed_models.add(model)
model_name = format_model_and_field_name(model.__name__)
if not issubclass(model, BaseModel):
# For non-Pydantic classes, generate model_fields from __annotations__ or __init__
if hasattr(model, "__annotations__") and model.__annotations__:
model_fields = {name: (typ, ...) for name, typ in get_type_hints(model).items()}
else:
init_signature = inspect.signature(model.__init__)
parameters = init_signature.parameters
model_fields = {name: (param.annotation, param.default) for name, param in parameters.items() if
name != "self"}
else:
# For Pydantic models, use model_fields and check for ellipsis (required fields)
model_fields = get_type_hints(model)
model_rule_parts = []
nested_rules = []
has_markdown_code_block = False
has_triple_quoted_string = False
look_for_markdown_code_block = False
look_for_triple_quoted_string = False
for field_name, field_info in model_fields.items():
if not issubclass(model, BaseModel):
field_type, default_value = field_info
# Check if the field is optional (not required)
is_optional = (default_value is not inspect.Parameter.empty) and (default_value is not Ellipsis)
else:
field_type = field_info
field_info = model.model_fields[field_name]
is_optional = field_info.is_required is False and get_origin(field_type) is Optional
rule_name, additional_rules = generate_gbnf_rule_for_type(
model_name, format_model_and_field_name(field_name), field_type, is_optional, processed_models,
created_rules, field_info
)
look_for_markdown_code_block = True if rule_name == "markdown_code_block" else False
look_for_triple_quoted_string = True if rule_name == "triple_quoted_string" else False
if not look_for_markdown_code_block and not look_for_triple_quoted_string:
if rule_name not in created_rules:
created_rules[rule_name] = additional_rules
model_rule_parts.append(f' ws "\\"{field_name}\\"" ":" ws {rule_name}') # Adding escaped quotes
nested_rules.extend(additional_rules)
else:
has_triple_quoted_string = look_for_triple_quoted_string
has_markdown_code_block = look_for_markdown_code_block
fields_joined = r' "," "\n" '.join(model_rule_parts)
model_rule = rf'{model_name} ::= "{{" "\n" {fields_joined} "\n" ws "}}"'
has_special_string = False
if has_triple_quoted_string:
model_rule += '"\\n" ws "}"'
model_rule += '"\\n" triple-quoted-string'
has_special_string = True
if has_markdown_code_block:
model_rule += '"\\n" ws "}"'
model_rule += '"\\n" markdown-code-block'
has_special_string = True
all_rules = [model_rule] + nested_rules
return all_rules, has_special_string
def generate_gbnf_grammar_from_pydantic_models(
models: list[type[BaseModel]], outer_object_name: str | None = None, outer_object_content: str | None = None,
list_of_outputs: bool = False
) -> str:
"""
Generate GBNF Grammar from Pydantic Models.
This method takes a list of Pydantic models and uses them to generate a GBNF grammar string. The generated grammar string can be used for parsing and validating data using the generated
* grammar.
Args:
models (list[type[BaseModel]]): A list of Pydantic models to generate the grammar from.
outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling.
outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling.
list_of_outputs (str, optional): Allows a list of output objects
Returns:
str: The generated GBNF grammar string.
Examples:
models = [UserModel, PostModel]
grammar = generate_gbnf_grammar_from_pydantic(models)
print(grammar)
# Output:
# root ::= UserModel | PostModel
# ...
"""
processed_models: set[type[BaseModel]] = set()
all_rules = []
created_rules: dict[str, list[str]] = {}
if outer_object_name is None:
for model in models:
model_rules, _ = generate_gbnf_grammar(model, processed_models, created_rules)
all_rules.extend(model_rules)
if list_of_outputs:
root_rule = r'root ::= (" "| "\n") "[" ws grammar-models ("," ws grammar-models)* ws "]"' + "\n"
else:
root_rule = r'root ::= (" "| "\n") grammar-models' + "\n"
root_rule += "grammar-models ::= " + " | ".join(
[format_model_and_field_name(model.__name__) for model in models])
all_rules.insert(0, root_rule)
return "\n".join(all_rules)
elif outer_object_name is not None:
if list_of_outputs:
root_rule = (
rf'root ::= (" "| "\n") "[" ws {format_model_and_field_name(outer_object_name)} ("," ws {format_model_and_field_name(outer_object_name)})* ws "]"'
+ "\n"
)
else:
root_rule = f"root ::= {format_model_and_field_name(outer_object_name)}\n"
model_rule = (
rf'{format_model_and_field_name(outer_object_name)} ::= (" "| "\n") "{{" ws "\"{outer_object_name}\"" ":" ws grammar-models'
)
fields_joined = " | ".join(
[rf"{format_model_and_field_name(model.__name__)}-grammar-model" for model in models])
grammar_model_rules = f"\ngrammar-models ::= {fields_joined}"
mod_rules = []
for model in models:
mod_rule = rf"{format_model_and_field_name(model.__name__)}-grammar-model ::= "
mod_rule += (
rf'"\"{model.__name__}\"" "," ws "\"{outer_object_content}\"" ":" ws {format_model_and_field_name(model.__name__)}' + "\n"
)
mod_rules.append(mod_rule)
grammar_model_rules += "\n" + "\n".join(mod_rules)
for model in models:
model_rules, has_special_string = generate_gbnf_grammar(model, processed_models,
created_rules)
if not has_special_string:
model_rules[0] += r'"\n" ws "}"'
all_rules.extend(model_rules)
all_rules.insert(0, root_rule + model_rule + grammar_model_rules)
return "\n".join(all_rules)
def get_primitive_grammar(grammar):
"""
Returns the needed GBNF primitive grammar for a given GBNF grammar string.
Args:
grammar (str): The string containing the GBNF grammar.
Returns:
str: GBNF primitive grammar string.
"""
type_list: list[type[object]] = []
if "string-list" in grammar:
type_list.append(str)
if "boolean-list" in grammar:
type_list.append(bool)
if "integer-list" in grammar:
type_list.append(int)
if "float-list" in grammar:
type_list.append(float)
additional_grammar = [generate_list_rule(t) for t in type_list]
primitive_grammar = r"""
boolean ::= "true" | "false"
null ::= "null"
string ::= "\"" (
[^"\\] |
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])
)* "\"" ws
ws ::= ([ \t\n] ws)?
float ::= ("-"? ([0] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? ws
integer ::= [0-9]+"""
any_block = ""
if "custom-class-any" in grammar:
any_block = """
value ::= object | array | string | number | boolean | null
object ::=
"{" ws (
string ":" ws value
("," ws string ":" ws value)*
)? "}" ws
array ::=
"[" ws (
value
("," ws value)*
)? "]" ws
number ::= integer | float"""
markdown_code_block_grammar = ""
if "markdown-code-block" in grammar:
markdown_code_block_grammar = r'''
markdown-code-block ::= opening-triple-ticks markdown-code-block-content closing-triple-ticks
markdown-code-block-content ::= ( [^`] | "`" [^`] | "`" "`" [^`] )*
opening-triple-ticks ::= "```" "python" "\n" | "```" "c" "\n" | "```" "cpp" "\n" | "```" "txt" "\n" | "```" "text" "\n" | "```" "json" "\n" | "```" "javascript" "\n" | "```" "css" "\n" | "```" "html" "\n" | "```" "markdown" "\n"
closing-triple-ticks ::= "```" "\n"'''
if "triple-quoted-string" in grammar:
markdown_code_block_grammar = r"""
triple-quoted-string ::= triple-quotes triple-quoted-string-content triple-quotes
triple-quoted-string-content ::= ( [^'] | "'" [^'] | "'" "'" [^'] )*
triple-quotes ::= "'''" """
return "\n" + "\n".join(additional_grammar) + any_block + primitive_grammar + markdown_code_block_grammar
def generate_markdown_documentation(
pydantic_models: list[type[BaseModel]], model_prefix="Model", fields_prefix="Fields",
documentation_with_field_description=True
) -> str:
"""
Generate markdown documentation for a list of Pydantic models.
Args:
pydantic_models (list[type[BaseModel]]): list of Pydantic model classes.
model_prefix (str): Prefix for the model section.
fields_prefix (str): Prefix for the fields section.
documentation_with_field_description (bool): Include field descriptions in the documentation.
Returns:
str: Generated text documentation.
"""
documentation = ""
pyd_models: list[tuple[type[BaseModel], bool]] = [(model, True) for model in pydantic_models]
for model, add_prefix in pyd_models:
if add_prefix:
documentation += f"{model_prefix}: {model.__name__}\n"
else:
documentation += f"Model: {model.__name__}\n"
# Handling multi-line model description with proper indentation
class_doc = getdoc(model)
base_class_doc = getdoc(BaseModel)
class_description = class_doc if class_doc and class_doc != base_class_doc else ""
if class_description != "":
documentation += " Description: "
documentation += format_multiline_description(class_description, 0) + "\n"
if add_prefix:
# Indenting the fields section
documentation += f" {fields_prefix}:\n"
else:
documentation += f" Fields:\n" # noqa: F541
if isclass(model) and issubclass(model, BaseModel):
for name, field_type in get_type_hints(model).items():
# if name == "markdown_code_block":
# continue
if get_origin(field_type) == list:
element_type = get_args(field_type)[0]
if isclass(element_type) and issubclass(element_type, BaseModel):
pyd_models.append((element_type, False))
if get_origin(field_type) == Union:
element_types = get_args(field_type)
for element_type in element_types:
if isclass(element_type) and issubclass(element_type, BaseModel):
pyd_models.append((element_type, False))
documentation += generate_field_markdown(
name, field_type, model, documentation_with_field_description=documentation_with_field_description
)
documentation += "\n"
if hasattr(model, "Config") and hasattr(model.Config,
"json_schema_extra") and "example" in model.Config.json_schema_extra:
documentation += f" Expected Example Output for {format_model_and_field_name(model.__name__)}:\n"
json_example = json.dumps(model.Config.json_schema_extra["example"])
documentation += format_multiline_description(json_example, 2) + "\n"
return documentation
def generate_field_markdown(
field_name: str, field_type: type[Any], model: type[BaseModel], depth=1,
documentation_with_field_description=True
) -> str:
"""
Generate markdown documentation for a Pydantic model field.
Args:
field_name (str): Name of the field.
field_type (type[Any]): Type of the field.
model (type[BaseModel]): Pydantic model class.
depth (int): Indentation depth in the documentation.
documentation_with_field_description (bool): Include field descriptions in the documentation.
Returns:
str: Generated text documentation for the field.
"""
indent = " " * depth
field_info = model.model_fields.get(field_name)
field_description = field_info.description if field_info and field_info.description else ""
origin_type = get_origin(field_type)
origin_type = field_type if origin_type is None else origin_type
if origin_type == list:
element_type = get_args(field_type)[0]
field_text = f"{indent}{field_name} ({format_model_and_field_name(field_type.__name__)} of {format_model_and_field_name(element_type.__name__)})"
if field_description != "":
field_text += ":\n"
else:
field_text += "\n"
elif origin_type == Union:
element_types = get_args(field_type)
types = []
for element_type in element_types:
types.append(format_model_and_field_name(element_type.__name__))
field_text = f"{indent}{field_name} ({' or '.join(types)})"
if field_description != "":
field_text += ":\n"
else:
field_text += "\n"
else:
field_text = f"{indent}{field_name} ({format_model_and_field_name(field_type.__name__)})"
if field_description != "":
field_text += ":\n"
else:
field_text += "\n"
if not documentation_with_field_description:
return field_text
if field_description != "":
field_text += f" Description: {field_description}\n"
# Check for and include field-specific examples if available
if hasattr(model, "Config") and hasattr(model.Config,
"json_schema_extra") and "example" in model.Config.json_schema_extra:
field_example = model.Config.json_schema_extra["example"].get(field_name)
if field_example is not None:
example_text = f"'{field_example}'" if isinstance(field_example, str) else field_example
field_text += f"{indent} Example: {example_text}\n"
if isclass(origin_type) and issubclass(origin_type, BaseModel):
field_text += f"{indent} Details:\n"
for name, type_ in get_type_hints(field_type).items():
field_text += generate_field_markdown(name, type_, field_type, depth + 2)
return field_text
def format_json_example(example: dict[str, Any], depth: int) -> str:
"""
Format a JSON example into a readable string with indentation.
Args:
example (dict): JSON example to be formatted.
depth (int): Indentation depth.
Returns:
str: Formatted JSON example string.
"""
indent = " " * depth
formatted_example = "{\n"
for key, value in example.items():
value_text = f"'{value}'" if isinstance(value, str) else value
formatted_example += f"{indent}{key}: {value_text},\n"
formatted_example = formatted_example.rstrip(",\n") + "\n" + indent + "}"
return formatted_example
def generate_text_documentation(
pydantic_models: list[type[BaseModel]], model_prefix="Model", fields_prefix="Fields",
documentation_with_field_description=True
) -> str:
"""
Generate text documentation for a list of Pydantic models.
Args:
pydantic_models (list[type[BaseModel]]): List of Pydantic model classes.
model_prefix (str): Prefix for the model section.
fields_prefix (str): Prefix for the fields section.
documentation_with_field_description (bool): Include field descriptions in the documentation.
Returns:
str: Generated text documentation.
"""
documentation = ""
pyd_models: list[tuple[type[BaseModel], bool]] = [(model, True) for model in pydantic_models]
for model, add_prefix in pyd_models:
if add_prefix:
documentation += f"{model_prefix}: {model.__name__}\n"
else:
documentation += f"Model: {model.__name__}\n"
# Handling multi-line model description with proper indentation
class_doc = getdoc(model)
base_class_doc = getdoc(BaseModel)
class_description = class_doc if class_doc and class_doc != base_class_doc else ""
if class_description != "":
documentation += " Description: "
documentation += "\n" + format_multiline_description(class_description, 2) + "\n"
if isclass(model) and issubclass(model, BaseModel):
documentation_fields = ""
for name, field_type in get_type_hints(model).items():
# if name == "markdown_code_block":
# continue
if get_origin(field_type) == list:
element_type = get_args(field_type)[0]
if isclass(element_type) and issubclass(element_type, BaseModel):
pyd_models.append((element_type, False))
if get_origin(field_type) == Union:
element_types = get_args(field_type)
for element_type in element_types:
if isclass(element_type) and issubclass(element_type, BaseModel):
pyd_models.append((element_type, False))
documentation_fields += generate_field_text(
name, field_type, model, documentation_with_field_description=documentation_with_field_description
)
if documentation_fields != "":
if add_prefix:
documentation += f" {fields_prefix}:\n{documentation_fields}"
else:
documentation += f" Fields:\n{documentation_fields}"
documentation += "\n"
if hasattr(model, "Config") and hasattr(model.Config,
"json_schema_extra") and "example" in model.Config.json_schema_extra:
documentation += f" Expected Example Output for {format_model_and_field_name(model.__name__)}:\n"
json_example = json.dumps(model.Config.json_schema_extra["example"])
documentation += format_multiline_description(json_example, 2) + "\n"
return documentation
def generate_field_text(
field_name: str, field_type: type[Any], model: type[BaseModel], depth=1,
documentation_with_field_description=True
) -> str:
"""
Generate text documentation for a Pydantic model field.
Args:
field_name (str): Name of the field.
field_type (type[Any]): Type of the field.
model (type[BaseModel]): Pydantic model class.
depth (int): Indentation depth in the documentation.
documentation_with_field_description (bool): Include field descriptions in the documentation.
Returns:
str: Generated text documentation for the field.
"""
indent = " " * depth
field_info = model.model_fields.get(field_name)
field_description = field_info.description if field_info and field_info.description else ""
if get_origin(field_type) == list:
element_type = get_args(field_type)[0]
field_text = f"{indent}{field_name} ({format_model_and_field_name(field_type.__name__)} of {format_model_and_field_name(element_type.__name__)})"
if field_description != "":
field_text += ":\n"
else:
field_text += "\n"
elif get_origin(field_type) == Union:
element_types = get_args(field_type)
types = []
for element_type in element_types:
types.append(format_model_and_field_name(element_type.__name__))
field_text = f"{indent}{field_name} ({' or '.join(types)})"
if field_description != "":
field_text += ":\n"
else:
field_text += "\n"
else:
field_text = f"{indent}{field_name} ({format_model_and_field_name(field_type.__name__)})"
if field_description != "":
field_text += ":\n"
else:
field_text += "\n"
if not documentation_with_field_description:
return field_text
if field_description != "":
field_text += f"{indent} Description: " + field_description + "\n"
# Check for and include field-specific examples if available
if hasattr(model, "Config") and hasattr(model.Config,
"json_schema_extra") and "example" in model.Config.json_schema_extra:
field_example = model.Config.json_schema_extra["example"].get(field_name)
if field_example is not None:
example_text = f"'{field_example}'" if isinstance(field_example, str) else field_example
field_text += f"{indent} Example: {example_text}\n"
if isclass(field_type) and issubclass(field_type, BaseModel):
field_text += f"{indent} Details:\n"
for name, type_ in get_type_hints(field_type).items():
field_text += generate_field_text(name, type_, field_type, depth + 2)
return field_text
def format_multiline_description(description: str, indent_level: int) -> str:
"""
Format a multiline description with proper indentation.
Args:
description (str): Multiline description.
indent_level (int): Indentation level.
Returns:
str: Formatted multiline description.
"""
indent = " " * indent_level
return indent + description.replace("\n", "\n" + indent)
def save_gbnf_grammar_and_documentation(
grammar, documentation, grammar_file_path="./grammar.gbnf", documentation_file_path="./grammar_documentation.md"
):
"""
Save GBNF grammar and documentation to specified files.
Args:
grammar (str): GBNF grammar string.
documentation (str): Documentation string.
grammar_file_path (str): File path to save the GBNF grammar.
documentation_file_path (str): File path to save the documentation.
Returns:
None
"""
try:
with open(grammar_file_path, "w") as file:
file.write(grammar + get_primitive_grammar(grammar))
print(f"Grammar successfully saved to {grammar_file_path}")
except IOError as e: