- Python 2.7
- PyTorch v0.4.1+
- pyclipper
- Polygon2
- OpenCV 3+ (for c++ version pse)
Progressive Scale Expansion Network (PSENet) is a text detector which is able to well detect the arbitrary-shape text in natural scene.
CUDA_VISIBLE_DEVICES=0,1,2,3 python train_ic15.py
CUDA_VISIBLE_DEVICES=0 python test_ic15.py --scale 1 --resume [path of model]
cd eval
sh eval_ic15.sh
sh eval_ctw1500.sh
Method | Extra Data | Precision (%) | Recall (%) | F-measure (%) | FPS (1080Ti) | Model |
---|---|---|---|---|---|---|
PSENet-1s (ResNet50) | - | 81.49 | 79.68 | 80.57 | 1.6 | baiduyun(extract code: rxti) |
PSENet-1s (ResNet50) | pretrain on IC17 MLT | 86.92 | 84.5 | 85.69 | 3.8 | baiduyun(extract code: aieo) |
PSENet-4s (ResNet50) | pretrain on IC17 MLT | 86.1 | 83.77 | 84.92 | 3.8 | baiduyun(extract code: aieo) |
Method | Extra Data | Precision (%) | Recall (%) | F-measure (%) | FPS (1080Ti) | Model |
---|---|---|---|---|---|---|
PSENet-1s (ResNet50) | - | 80.57 | 75.55 | 78.0 | 3.9 | baiduyun(extract code: ksv7) |
PSENet-1s (ResNet50) | pretrain on IC17 MLT | 84.84 | 79.73 | 82.2 | 3.9 | baiduyun(extract code: z7ac) |
PSENet-4s (ResNet50) | pretrain on IC17 MLT | 82.09 | 77.84 | 79.9 | 8.4 | baiduyun(extract code: z7ac) |
ICDAR 2015 (training with ICDAR 2017 MLT)
Method | Precision (%) | Recall (%) | F-measure (%) |
---|---|---|---|
PSENet-4s (ResNet152) | 87.98 | 83.87 | 85.88 |
PSENet-2s (ResNet152) | 89.30 | 85.22 | 87.21 |
PSENet-1s (ResNet152) | 88.71 | 85.51 | 87.08 |
Method | Precision (%) | Recall (%) | F-measure (%) |
---|---|---|---|
PSENet-4s (ResNet152) | 75.98 | 67.56 | 71.52 |
PSENet-2s (ResNet152) | 76.97 | 68.35 | 72.40 |
PSENet-1s (ResNet152) | 77.01 | 68.40 | 72.45 |
Method | Precision (%) | Recall (%) | F-measure (%) |
---|---|---|---|
PSENet-4s (ResNet152) | 80.49 | 78.13 | 79.29 |
PSENet-2s (ResNet152) | 81.95 | 79.30 | 80.60 |
PSENet-1s (ResNet152) | 82.50 | 79.89 | 81.17 |
Method | Precision (%) | Recall (%) | F-measure (%) |
---|---|---|---|
PSENet-1s (ResNet152) | 78.5 | 72.1 | 75.2 |
Figure 3: The results on ICDAR 2015, ICDAR 2017 MLT and SCUT-CTW1500