-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSentiment Analysis App mk1.py
194 lines (159 loc) · 5.87 KB
/
Sentiment Analysis App mk1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import tweepy
from tweepy import Stream
from tweepy import OAuthHandler
from tweepy.streaming import StreamListener
import time
import csv
import collection
import copy
consumer_key = 'KG2opAGBUTm7WOh4kxRH4hkv0'
consumer_secret = 'yMnAZmUJNgPMG52aJppODuCmumiLJAKaofRdOnTc3fmD2BQxmV'
access_token = '2797292249-DpQSv3x81hHuPQCSgyyowyWiQk5nWFQUHz94quG'
access_secret = '0kK2PLwxdiXG7PAyZgBGptvqUO9Aiz5hPsQZHVecqdh8Q'
class listener(StreamListener): # collects the tweets
def on_data(self, data): #
tweet = data.split(',"text":"')[1].split('","source')[0]#each tweet is split into
tweetData = str(time.time())
saveFile = open('TwitterDB.csv','a')
saveFile.write(tweetData+','+tweet)
saveFile.write('\n')
saveFile.close()
time.sleep(100)
def on_error(self, status):
print (status)
def tokenizer():
lTweets = []
with open('TwitterDB.csv', 'r') as f:
reader = csv.reader(f)
for row in reader:
lTweets.append(row[1])
for x in range (0, len(lTweets)):
lTweet = []
sTweet = lTweets[x]
lTweet = sTweet.splitline()
for y in range (0,len(lTweet)):
sWord = lTweet(y)
if sWord(len(sWord)-1:len(sWord)) == ",":
lTweet.insert(y+1,sWord[0:len(sWord)-1])
lTweet.remove(sTweet)
lTweet.insert(y+1, ",")
elif sWord(len(sWord)-1:len(sWord)) == ".":
lTweet.insert(y+1,sWord[0:len(sWord)-1])
lTweet.remove(sTweet)
lTweet.insert(y+1, ".")
elif sWord(len(sWord)-1:len(sWord)) == "?":
lTweet.insert(y+1,sWord[0:len(sWord)-1])
lTweet.remove(sTweet)
lTweet.insert(y+1, "?")
elif sWord(len(sWord)-1:len(sWord)) == "!":
lTweet.insert(y+1,sWord[0:len(sWord)-1])
lTweet.remove(sTweet)
lTweet.insert(y+1, "!")
if sSentence[len(sSentence):len(sSentence)+1] != ".":
sSentence = sSentence +"."
lSen = []
nStor1 = 0
nStor2 = 0
nLetter = ""
sWord = ""
sNegate = "n't"
if sSentence[len(sSentence)-1:len(sSentence)]!= ".":
sSentence = sSentence +"."
for i in range (0, len(sSentence)):
nLetter = ord(sSentence[i:i+1])
nStor2 = i
if nLetter == 32:
sWord = sSentence[nStor1:nStor2]
if sWord[len(sWord)-3:len(sWord)] == "n't":
sWord = sWord[0:len(sWord)-3]
lSen.append(sWord)
lSen.append(sNegate)
else:
lSen.append(sSentence[nStor1:nStor2])
nStor1 = nStor2+1
else:
if nLetter == 44 or nLetter == 46:
lSen.append(sSentence[nStor1:nStor2])
nStor1 = nStor2+1
lSen= [item.lower() for item in lSen]
sEmpty = ""
print(lSen)
return lSen
class AnalyzeTweets(object):
def __init__(self, tArray):
self.tArray = tArray
def sentiment(self):
lSen = self.tArray
num_pos_tweets = 0
num_neg_tweets = 0
pos_position_list = []
neg_position_list = []
nSen = len(lSen)
positive_words = []
with open('positive-words.txt') as inputfile:
for line in inputfile:
positive_words.append(line.strip())
negative_words = []
with open('negative-words.txt') as inputfile:
for line in inputfile:
positive_words.append(line.strip())
for x in range (0, nSen):
for i in range(0, len(positive_words)):
if lSen[x] == positive_words[i]:
num_pos_tweets = num_pos_tweets + 1
pos_position_list.append(x)
for z in range (0, nSen):
for y in range(0, len(negative_words)):
if lSen[z] == negative_words[i]:
num_neg_tweets = num_neg_tweets + 1
neg_position_list.append(z)
for g in range ( 0, len(pos_position_list)):
for h in range ( 0, nSen):
if lSen(pos_position_list(g)-1) == "n't":
num_neg_tweets = num_neg_tweets + 1
num_pos_tweets = num_pos_tweets-1
if num_neg_tweets >= num_pos_tweets:
print("This tweet is negative")
else:
print("this tweet is Positive")
def sentiment(tokenizer):
lSen = tokenizer()
num_pos_tweets = 0
num_neg_tweets = 0
pos_position_list = []
neg_position_list = []
nSen = len(lSen)
positive_words = []
with open('positive-words.txt') as inputfile:
for line in inputfile:
positive_words.append(line.strip())
negative_words = []
with open('negative-words.txt') as inputfile:
for line in inputfile:
positive_words.append(line.strip())
for x in range (0, nSen):
for i in range(0, len(positive_words)):
if lSen[x] == positive_words[i]:
num_pos_tweets = num_pos_tweets + 1
pos_position_list.append(x)
for z in range (0, nSen):
for y in range(0, len(negative_words)):
if lSen[z] == negative_words[i]:
num_neg_tweets = num_neg_tweets + 1
neg_position_list.append(z)
for g in range ( 0, len(pos_position_list)):
for h in range ( 0, nSen):
if lSen(pos_position_list(g)-1) == "n't":
num_neg_tweets = num_neg_tweets + 1
num_pos_tweets = num_pos_tweets-1
if num_neg_tweets >= num_pos_tweets:
print("This tweet is negative")
else:
print("this tweet is Positive")
print('What is your Movie')
sUser = input()
auth = OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_secret)
twitterStream = Stream(auth, listener())
twitterStream.filter(track = [sUser])
print('finish')