forked from keras-team/keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstateful_lstm.py
84 lines (71 loc) · 2.28 KB
/
stateful_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
'''Example script showing how to use stateful RNNs
to model long sequences efficiently.
'''
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers.core import Dense
from keras.layers.recurrent import LSTM
# since we are using stateful rnn tsteps can be set to 1
tsteps = 1
batch_size = 25
epochs = 25
# number of elements ahead that are used to make the prediction
lahead = 1
def gen_cosine_amp(amp=100, period=25, x0=0, xn=50000, step=1, k=0.0001):
"""Generates an absolute cosine time series with the amplitude
exponentially decreasing
Arguments:
amp: amplitude of the cosine function
period: period of the cosine function
x0: initial x of the time series
xn: final x of the time series
step: step of the time series discretization
k: exponential rate
"""
cos = np.zeros(((xn - x0) * step, 1, 1))
for i in range(len(cos)):
idx = x0 + i * step
cos[i, 0, 0] = amp * np.cos(idx / (2 * np.pi * period))
cos[i, 0, 0] = cos[i, 0, 0] * np.exp(-k * idx)
return cos
print('Generating Data')
cos = gen_cosine_amp()
print('Input shape:', cos.shape)
expected_output = np.zeros((len(cos), 1))
for i in range(len(cos) - lahead):
expected_output[i, 0] = np.mean(cos[i + 1:i + lahead + 1])
print('Output shape')
print(expected_output.shape)
print('Creating Model')
model = Sequential()
model.add(LSTM(50,
batch_input_shape=(batch_size, tsteps, 1),
return_sequences=True,
stateful=True))
model.add(LSTM(50,
batch_input_shape=(batch_size, tsteps, 1),
return_sequences=False,
stateful=True))
model.add(Dense(1))
model.compile(loss='rmse', optimizer='rmsprop')
print('Training')
for i in range(epochs):
print('Epoch', i, '/', epochs)
model.fit(cos,
expected_output,
batch_size=batch_size,
verbose=1,
nb_epoch=1)
model.reset_states()
print('Predicting')
predicted_output = model.predict(cos, batch_size=batch_size)
print('Ploting Results')
plt.subplot(2, 1, 1)
plt.plot(expected_output)
plt.title('Expected')
plt.subplot(2, 1, 2)
plt.plot(predicted_output)
plt.title('Predicted')
plt.show()