Skip to content

Latest commit

 

History

History

lstm-text-classfication

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction

This is the implementation for LSTM Text Classfication.
Perform experiments on the English data from TREC

Requirement

  • python 3.5
  • pytorch 0.2.0
  • numpy 1.13.1
  • tqdm

Usage

python3 main.py -h

You will get:

usage: main.py [-h] [--lr LR] [--epochs EPOCHS] [--batch-size BATCH_SIZE]
               [--seed SEED] [--cuda-able] [--save SAVE] [--data DATA]
               [--dropout DROPOUT] [--embed-dim EMBED_DIM]
               [--hidden-size HIDDEN_SIZE] [--lstm-layers LSTM_LAYERS]
               [--bidirectional]

LSTM text classification


optional arguments:
  -h, --help            show this help message and exit
  --lr LR               initial learning rate [default: 0.001]
  --epochs EPOCHS       number of epochs for train [default: 32]
  --batch-size BATCH_SIZE
                        batch size for training [default: 64]
  --seed SEED           random seed
  --cuda-able           enables cuda
  --save SAVE           path to save the final model
  --data DATA           location of the data corpus
  --dropout DROPOUT     the probability for dropout (0 = no dropout) [default:
                        0.5]
  --embed-dim EMBED_DIM
                        number of embedding dimension [default: 128]
  --hidden-size HIDDEN_SIZE
                        number of lstm hidden dimension [default: 128]
  --lstm-layers LSTM_LAYERS
                        biLSTM layer numbers
  --bidirectional       If True, becomes a bidirectional LSTM [default: False]

Train

python3 main.py

Result

Acc: 88.6%